Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(39): 46464-46477, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34569780

ABSTRACT

Many works utilize products isolated from nature as capping agents to functionalize gold nanoparticles for targeting and therapeutic applications. Some of the most advanced of these strategies utilize complex multicomponent biomaterials, such as whole cell-membranes, for nanoparticle functionalization strategies for evading or initializing immune response as well as for targeting. Strategies like these, wherein whole cell membrane is utilized for functionalization, take advantage of the complexity of the protein-lipid content and organization, which cells normally use for communication and interaction (instilling these capacities to nanoparticle vectors). Many approaches for achieving this in functionalizing the surface of nanoparticles rely on multistep processes, which necessitate the addition and then removal of synthetic molecules, heating, or pH modifications. These processes can have deleterious modifying effects on the functionalizing biomolecules, resulting in loss of product and time during each purification step, as well as potentially changing the biomolecule functionality toward a nondesirable effect. Here, we describe methods for forming gold nanoparticles at room temperature in a single step, functionalized with proteins, using nicotinamide adenine dinucleotide (NADH). This process enables formation of nanoparticles that can be functionalized by individual proteins (demonstrated with FBS) or whole cells membrane (extracted from B16F10 cells). This work is derivative from observations found in the literature by us and others, that mammalian cells are capable of producing gold nanoparticles from ionic gold without the supplementation of chemical species. The products of this single-step synthesis described herein have been optimized to maintain biomolecule integrity and so that there are no further purification steps required. To characterize the nanoparticles in terms of their shape, size, surface functionality, and biomolecule integrity throughout development, we employed light-based spectroscopy techniques, molecular modeling, electron microscopy, light scattering, and gel electrophoresis techniques. In order to compare the optimized biomolecule-functionalized nanoparticles against current standards (which require synthetic linkers, heating, or pH manipulation), we employed metabolic and live/dead assays as well as light-based microscopy/spectroscopy in vitro. In comparing our synthetic process against others for forming gold nanoparticles functionalized with complex biomolecule components (whole-cell membrane), we found that this process had superior particle internalization. Our strategy has similar outlets for application to these other works, however, because this process is entirely reliant on endogenous biomaterials and has additional potential.


Subject(s)
Biomimetic Materials/chemistry , Immobilized Proteins/chemistry , Metal Nanoparticles/chemistry , Animals , Biomimetic Materials/chemical synthesis , Blood Proteins/chemistry , Cattle , Cell Line, Tumor , Cell Membrane/chemistry , Gold/chemistry , Mice , NAD/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...