Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Plant Genome ; : e20461, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797919

ABSTRACT

Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.

2.
Plants (Basel) ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765472

ABSTRACT

Mulching and nitrogen (N) fertilization are the main drivers for sustainable crop production. The sole use of nitrogen fertilizer threatened both the physiology and production of maize in rain-fed areas. Therefore, we proposed that wheat straw mulching with N fertilization would increase maize yield by improving soil fertility, physiology, and nitrogen use efficiency. A two-year field study evaluated the effects of CK (control), N (nitrogen application at 172 kg ha-1), HS (half wheat straw mulch, 2500 kg ha-1), HS+N (half wheat straw, 2500 kg ha-1 plus 172 kg N ha-1), FS (full wheat straw, 5000 kg ha-1), and FS+N (full wheat straw, 5000 kg ha-1 plus 172 kg N ha-1) on maize growth, physiology, and biochemistry. Compared with the control, the FS+N treatment resulted in the increase of 56% photosynthetic efficiency, 9.6% nitrogen use efficiency, 60% nitrogen uptake, 80% soluble sugar, 59% starches, 48% biomass, and 29% grain yield of maize. In addition, the FS+N regime increased 47%, 42%, and 106% of soil organic carbon and available P and N content in comparison with the control. Maize grain and biomass yields were positively correlated with N uptake, photosynthesis, soil organic carbon, and soil available N and P contents. Conclusively, the use of wheat straw at 5000 kg ha-1, along with 172 kg N ha-1, is a promising option for building a sustainable wheat-maize cropping system to achieve optimal crop yield and improved plant and soil health in a semi-arid region of China.

3.
Pathogens ; 12(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37624015

ABSTRACT

Sorghum mosaic virus (SrMV) causes sugarcane mosaic disease and has significant adverse economic impacts on the cultivation of sugarcane. This study aimed to develop a rapid isotherm nucleic acid amplification method for detecting SrMV. Specific primers were designed to target the conserved region of the P3 gene of SrMV. The reverse transcription recombinase-aided amplification (RT-RAA) method was developed by screening primers and optimizing reaction conditions. Comparative analyses with RT-PCR demonstrated that the RT-RAA method exhibited superior specificity, sensitivity, and reliability for SrMV detection. Notably, using a standard plasmid diluted 10-fold continuously as a template, the sensitivity of RT-RAA was 100-fold higher than that of RT-PCR. Moreover, the RT-RAA reaction displayed flexibility in a temperature range of 24-49 °C, eliminating the need for expensive and complex temperature control equipment. Thus, this method could be utilized at ambient or even human body temperature. Within a short duration of 10 min at 39 °C, the target sequence of SrMV could be effectively amplified. Specificity analysis revealed no cross-reactivity between SrMV and other common sugarcane viruses detected via the RT-RAA. With its high sensitivity, rapid reaction time, and minimal equipment requirements, this method presents a promising diagnostic tool for the reliable and expedited detection of SrMV. Furthermore, it indicates broad applicability for successfully detecting other sugarcane viruses.

4.
Front Plant Sci ; 14: 1183144, 2023.
Article in English | MEDLINE | ID: mdl-37139112

ABSTRACT

Introduction: Autophagy not only plays an antiviral role but also can be utilized by viruses to facilitate virus infection. However, the underlying mechanism of potato virus Y (PVY) infection against plant autophagy remains unclear. BI-1, localizing to the endoplasmic reticulum (ER), is a multifunctional protein and may affect the virus infection. Methods: In this study, Y2H, BiFC, qRT-PCR, RNA-Seq, WB and so on were used for research. Results: P3 and P3N-PIPO of PVY can interact with the Bax inhibitor 1 (BI-1) of N. benthamiana. However, BI-1 knockout mutant showed better growth and development ability. In addition, when the BI-1 gene was knocked out or knocked down in N. benthamiana, the PVY-infected mutant showed milder symptoms and lower virus accumulation. Analysis of transcriptome data showed that the deletion of NbBI-1 weakened the gene expression regulation induced by PVY infection and NbBI-1 may reduce the mRNA level of NbATG6 by regulated IRE1-dependent decay (RIDD) in PVY-infected N. benthamiana. The expression level of the ATG6 gene of PVY-infected WT was significantly down-regulated, relative to the PVY-infected mutant. Further results showed that ATG6 of N. benthamiana can degrade NIb, the RNA-dependent RNA polymerase (RdRp) of PVY. NbATG6 has a higher mRNA level in PVY-infected BI-1 knockout mutants than in PVY-infected WT. Conclussion: The interaction of P3 and/or P3N-PIPO of PVY with BI-1 decrease the expression of the ATG6 gene might be mediated by RIDD, which inhibits the degradation of viral NIb and enhances viral replication.

5.
Front Microbiol ; 14: 1133973, 2023.
Article in English | MEDLINE | ID: mdl-36998394

ABSTRACT

Sugarcane straw returned to the field has rapidly increased due to the bane on straw burning in China. Straw returning of new sugarcane cultivars has been practiced in the fields. Still, its response has not been explored on soil functionality, microbial community and yield of different sugarcane cultivars. Therefore, a comparison was made between an old sugarcane cultivar ROC22 and a new sugarcane cultivar Zhongzhe9 (Z9). The experimental treatments were: without (R, Z), with straw of the same cultivar (RR, ZZ), and with straw of different cultivars (RZ, ZR). Straw returning improved the contents of soil total nitrogen (TN by 73.21%), nitrate nitrogen (NO3 -N by 119.61%), soil organic carbon (SOC by 20.16%), and available potassium (AK by 90.65%) at the jointing stage and were not significant at the seedling stage. The contents of NO3 -N was 31.94 and 29.58%, available phosphorus (AP 53.21 and 27.19%), and available potassium (AK 42.43 and 11.92%) in RR and ZZ were more than in RZ and ZR. Straw returning with the same cultivar (RR, ZZ) significantly increased the richness and diversity of the rhizosphere microbial community. The microbial diversity of cultivar Z9 (treatment Z) was greater than that of cultivar ROC22 (Treatment R). In the rhizosphere, the relative abundance of beneficial microorganisms Gemmatimonadaceae, Trechispora, Streptomyces, Chaetomium, etc., increased after the straw returned. Sugarcane straw enhanced the activity of Pseudomonas and Aspergillus and thus increased the yield of sugarcane., The richness and diversity of the rhizosphere microbial community of Z9 increased at maturity. In ROC22, bacterial diversity increased, and fungal diversity decreased. These findings collectively suggested that the impact of Z9 straw returning was more beneficial than ROC22 on the activity of rhizosphere microorganism's soil functionality and sugarcane production.

6.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421152

ABSTRACT

For the first time, a nanobiosensor was established for Sorghum mosaic virus (SrMV) detection. The biosensor consists of cadmium telluride quantum dots (CdTe QDs) conjugated to the specific antibody (Ab) against SrMV coat protein (CP) and carbon quantum dots (C QDs) labeled with SrMV coat protein. The formation of the fluorophore-quencher immunocomplex CdTe QDs-Ab+C QDs-CP led to a distinct decrease in the fluorescence intensity of CdTe QDs. Conversely, the emission intensity of CdTe QDs recovered upon the introduction of unlabeled CP. The developed biosensor showed a limit of detection of 44 nM in a linear range of 0.10-0.54 µM and exhibited the strongest fluorescence intensity (about 47,000 a.u.) at 552 nm. This strategy was applied to detect purified CP in plant sap successfully with a recovery rate between 93-103%. Moreover, the feasibility of the proposed method was further verified by the detection of field samples, and the results were consistent with an enzyme-linked immunosorbent assay (ELISA). Contrarily to ELISA, the proposed biosensor did not require excessive washing and incubation steps, thus the detection could be rapidly accomplished in a few minutes. The high sensitivity and short assay time of this designed biosensor demonstrated its potential application in situ and rapid detection. In addition, the fluorescence quenching of CdTe QDs was attributed to dynamic quenching according to the Stern-Volmer equation.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Mosaic Viruses , Quantum Dots , Sorghum , Tellurium , Biosensing Techniques/methods , Early Diagnosis
7.
BMC Genomics ; 23(1): 671, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36162999

ABSTRACT

BACKGROUND: Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. RESULT: The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. CONCLUSION: These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease.


Subject(s)
Saccharum , Xanthomonas , Plant Diseases/microbiology , Plant Leaves/genetics , Saccharum/microbiology , Virulence/genetics , Virulence Factors/genetics , Xanthomonas/genetics
8.
Front Microbiol ; 13: 943880, 2022.
Article in English | MEDLINE | ID: mdl-35847108

ABSTRACT

Integrons are genetic components that are critically involved in bacterial evolution and antimicrobial resistance by assisting in the propagation and expression of gene cassettes. In recent decades, biochar has been introduced as a fertilizer to enhance physiochemical properties and crop yield of soil, while manure has been used as a fertilizer for centuries. The current study aimed to investigate the impact of biochar, manure, and a combination of biochar and manure on integrons, their gene cassettes, and relative antimicrobial resistance in paddy soil. Field experiments revealed class 1 (CL1) integrons were prevalent in all samples, with higher concentration and abundance in manure-treated plots than in biochar-treated ones. The gene cassette arrays in the paddy featured a broad pool of cassettes with a total of 35% novel gene cassettes. A majority of gene cassettes encoded resistance to aminoglycosides, heat shock protein, heavy metals, pilus secretory proteins, and twin-arginine translocases (Tat), TatA, TatB, and TatC. Both in combination and solo treatments, the diversity of gene cassettes was increased in the manure-enriched soil, however, biochar reduced the gene cassettes' diversity and their cassettes array. Manure considerably enhanced CL1 integrons abundance and antimicrobial resistance, whereas biochar amendments significantly reduced integrons and antimicrobial resistance. The results highlighted the differential effects of biochar and manure on integrons and its gene cassette arrays, showing increased abundance of integrons and antibiotic resistance upon manure application and decrease of the same with biochar. The use of biochar alone or in combination with manure could be a beneficial alternative to mitigate the spread of antimicrobial resistance and bacterial evolution in the environment, specifically in paddy soils.

9.
Front Plant Sci ; 13: 1064359, 2022.
Article in English | MEDLINE | ID: mdl-36704163

ABSTRACT

Most studies have shown that foliar silicon (Si) spraying can reduce the risk of rice quality safety caused by cadmium (Cd) contamination. However, it has recently been found that different rice varieties have different responses to Si. Therefore, we selected six rice varieties (YHSM, YXY1179, YXYLS, JLK1377, MXZ2, and YLY900) to compare the differences in the effects of leaf spray on Cd accumulation among different varieties. According to the change in Cd content in brown rice after Si application, the six rice varieties were divided into two types: Si-inhibited varieties (JLY1377, MXZ2, LY900, and YXYLS) and Si-stimulated varieties (WY1179 and YHSM). For Si-inhibited varieties, the Cd content of rice was reduced by 13.5%-65.7% after Si application. At the same time, the Cd content of the root, stem, leaf, panicle, and glume decreased to different degrees, the Cd content of the cell wall component increased by 2.2%-37.6%, the extraction state of Cd with strong mobile activity (ethanol-extracted and deionized water-extracted) was changed to the extraction state of Cd with weak mobile activity (acetic acid-extracted and hydrochloric acid-extracted), and the upward transport coefficient of different parts was reduced. For Si-stimulated varieties, Si application increased the Cd content of rice by 15.7%-24.1%. At the same time, the cell soluble component Cd content significantly increased by 68.4%-252.4% and changed the weakly mobile extraction state Cd to the strong mobile extraction state, increasing the upward transport coefficient of different sites. In conclusion, different rice varieties have different responses to Si. Foliar Si spraying inhibits the upward migration of Cd of Si-inhibited varieties, thereby reducing the Cd content of rice, but it has the opposite effect on Si-stimulated varieties. This result reminds us that we need to consider the difference in the effect of varieties in the implementation of foliar Si spraying in remediation of Cd-contaminated paddy fields.

10.
Front Microbiol ; 12: 729047, 2021.
Article in English | MEDLINE | ID: mdl-34589076

ABSTRACT

The continuous planting of soybeans leads to soil acidification, aggravation of soil-borne diseases, reduction in soil enzyme activity, and accumulation of toxins in the soil. Microorganisms in the rhizosphere play a very important role in maintaining the sustainability of the soil ecosystem and plant health. In this study, two soybean genotypes, one bred for continuous cropping and the other not, were grown in a Mollisol in northeast China under continuous cropping for 7 and 36years in comparison with soybean-maize rotation, and microbial communities in the rhizosphere composition were assessed using high-throughput sequencing technology. The results showed that short- or long-term continuous cropping had no significant effect on the rhizosphere soil bacterial alpha diversity. Short-term continuous planting increased the number of soybean cyst nematode (Heterodera glycines), while long-term continuous planting reduced these numbers. There were less soybean cyst nematodes in the rhizosphere of the tolerant genotypes than sensitive genotypes. In addition, continuous cropping significantly increased the potential beneficial bacterial populations, such as Pseudoxanthomonas, Nitrospira, and Streptomyces compared to rotation and short-term continuous cropping, suggesting that long-term continuous cropping of soybean shifts the microbial community toward a healthy crop rotation system. Soybean genotypes that are tolerant to soybean might recruit some microorganisms that enhance the resistance of soybeans to long-term continuous cropping. Moreover, the network of the two genotypes responded differently to continuous cropping. The tolerant genotype responded positively to continuous cropping, while for the sensitive genotype, topology analyses on the instability of microbial community in the rhizosphere suggested that short periods of continuous planting can have a detrimental effect on microbial community stability, although this effect could be alleviated with increasing periods of continuous planting.

11.
Plant Dis ; 105(11): 3531-3537, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34042497

ABSTRACT

A novel virus of the genus Mastrevirus, family Geminivirdae, has been reported in sugarcane germplasm collections in Florida, Guadeloupe, and Réunion, and was named sugarcane striate virus (SStrV). Although the full-length sequence of an SStrV isolate from China was obtained in 2015, the incidence, geographical distribution, and genetic diversity of this virus remained unclear. A single leaf sample from 2,368 sugarcane plants from main sugarcane-producing regions of China and germplasm collections were tested for SStrV by PCR. Average virus incidence was 25.1% for field-collected samples, and SStrV was detected in most Saccharum species and two sugarcane-related species, with the highest incidence in Saccharum officinarum (44.1%) followed by Saccharum spp. local varieties (33.3%) grown for chewing cane for a long time. The virus incidence was much lower (6.8%) in modern commercial cultivars (Saccharum spp. hybrids). Phylogenetic trees based on full-length genomes of 157 SStrV isolates revealed that Chinese isolates comprised strains A and B, but not C and D, that were reported in Florida, U.S.A. SStrV strain A was the most prominent (98.7%) and widespread strain in China and was further divided into eight subgroups. Almost half (45.6%) of the SStrV-positive samples from S. officinarum and Saccharum spp. local varieties were coinfected with sugarcane mosaic disease viruses or sugarcane yellow leaf virus. Interestingly, most of the plants infected by strain A of SStrV were asymptomatic. SStrV appears to be widespread in China, and its influence on chewing cane deserves further investigation.


Subject(s)
Geminiviridae , Saccharum , Geminiviridae/genetics , Genetic Variation , Incidence , Phylogeny
12.
Front Microbiol ; 11: 1996, 2020.
Article in English | MEDLINE | ID: mdl-32973720

ABSTRACT

Aluminum (Al)-resistant plant cultivars can recruit beneficial microbes to alleviate the stresses. However, the mechanism of how rhizobacterial communities strengthen Al tolerance of wild soybean has not been addressed. The aim of this study was to investigate the bacterial community structure in the rhizosphere of Al-tolerant (BW69) and Al-sensitive (W270) wild soybean germplasm subjected to three Al concentrations. We analyzed the rhizobacterial communities of the two genotypes by high-throughput sequencing of 16S rRNA genes. The results showed that high Al stress recruited different rhizobacterial communities between two genotypes. In total, 49 OTUs, such as OTU15 (Gammaproteobacteria_KF-JG30-C25_norank), OTU23 (Mizugakiibacter), and OTU93 (Alkanibacter), were enriched in the rhizosphere of BW69 at the low and high Al concentrations. Moreover, bacterial community in the rhizosphere of BW69 had a more complex co-occurrence network than did W270 at the high Al concentration. Overall, our findings highlighted that high Al concentration magnified the difference in rhizobacterial community structure between two genotypes. However, the lower modularity of the co-occurrence network in rhizosphere of BW69 than W270 under Al stress may cause the rhizobacterial community to be less resistant and more influenced by disturbance. This study emphasizes the possibility of using rhizobacteria as an improved crop breeding or gene to produce crops that are more resistant to the toxicity of heavy metal.

13.
Genes (Basel) ; 11(9)2020 08 28.
Article in English | MEDLINE | ID: mdl-32872161

ABSTRACT

Integrons are hot spots for acquiring gene cassettes from the environment and play a major role in the bacterial evolution and dissemination of antimicrobial resistance (AMR), thus posing a serious threat. There are currently studies on integrons and antibiotic resistance genes; however, the presence and association of integrons in different agricultural crops and their subsequent dissemination and role in AMR have not been reported previously. This study examines the abundance of integrons, their gene cassette diversity in various crop soils, and their role in the dissemination of AMR in the southern region of China. Samples from different agri-crop soil, such as rice (R.S), sugarcane (S.S), citrus (C.S), banana (B.S), agricultural runoff (the point where the runoff of all sites meet (R.O)), and wild (non-agricultural) soil (W.S), were collected. Quantitative PCR was used to determine the abundance of integrons, and clone libraries were constructed to examine the gene cassette arrays. All the tested samples were found positive for Class-I (CL1) integrons and revealed a higher concentration and higher relative abundance of R.S than the others, with the least found at the W.S site. The W.S CL1 cassette arrays were found empty, and no putative conserved domains were found. The R.O was found to contain a high number of gene cassettes with various functions, while the smallest number of gene cassettes was found in the S.S among the crop soils. Most of the gene cassettes presented by the R.O were primarily shared with other sites, and the antibiotic-resistant genes were consistently observed to be dominant. The constructed clone libraries represented a diverse gene cassette array with 16% novel gene cassettes that play a vital role in pathogenesis, transportation, biosynthesis, and AMR. Most resistance-related gene cassettes were associated with the genes encoding resistance to quaternary ammonium compound (QAC) and aminoglycosides. This study highlights the significant differences in the abundance of integrons among various agricultural soils and offers deep insight into the pools of gene cassettes that play a key role in the dissemination of integrons and AMR.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Crops, Agricultural/genetics , Drug Resistance, Bacterial/genetics , Genetic Variation , Integrons/genetics , Soil/chemistry , Bacteria/drug effects , Crops, Agricultural/drug effects , Crops, Agricultural/microbiology , Soil Microbiology
14.
Front Microbiol ; 11: 596472, 2020.
Article in English | MEDLINE | ID: mdl-33519733

ABSTRACT

Intercropping of soybean and sugarcane is an important strategy to promote sustainable development of the sugarcane industry. In fact, our understanding of the interaction between the rhizosphere and bacterial communities in the intercropping system is still evolving; particularly, the influence of different sugarcane varieties on rhizosphere bacterial communities in the intercropping process with soybean, still needs further research. Here, we evaluated the response of sugarcane varieties ZZ1 and ZZ9 to the root bacterial community during intercropping with soybean. We found that when ZZ9 was intercropped with soybean, the bacterial diversity increased significantly as compared to that when ZZ1 was used. ZZ9 played a major role in changing the bacterial environment of the root system by affecting the diversity of rhizosphere bacteria, forming a rhizosphere environment more conducive to the growth of sugarcane. In addition, our study found that ZZ1 and ZZ9 had differed significantly in their utilization of nutrients. For example, nutrients were affected by different functional genes in processes such as denitrification, P-uptake and transport, inorganic P-solubilization, and organic P-mineralization. These results are significant in terms of providing guidance to the sugarcane industry, particularly for the intercropping of sugarcane and soybean in Guangxi, China.

15.
Eur J Gastroenterol Hepatol ; 31(1): 29-33, 2019 01.
Article in English | MEDLINE | ID: mdl-30080685

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are important causes of morbidity and mortality among haemodialysis (HD) patients and create problems in the management of patients in the renal dialysis units, as patients with chronic renal failure do not absolutely clear these viral infections. AIM: The aim of the study is molecular detection of HBV and HCV and their possible risk factors among the HD patients in northern Pakistan. MATERIALS AND METHODS: A cross-sectional study was conducted from November 2013 to June 2014. The infections were investigated through serological and molecular techniques. RESULTS: The overall prevalence of HBV among the five HD centres was 7.5%. The main risk factors were HD centre (26.66%), history of blood transfusion (20%), dental procedure (13.33%) and time duration on HD (6.66%). However, the overall prevalence of HCV among the five HD centres was 19.58%. The main risk factors included HD centre (25.53%), history of blood transfusion (25.53%), dental procedure (10.64%), surgical treatment (6.38%), patients treated abroad (6.38%) and time duration on HD (4.25%). CONCLUSION: The high prevalence of hepatitis viruses among HD patients of northern Pakistan indicates a close relation between HD centres and hepatitis virus transmission. Therefore, preventive control measures are essential to reduce hepatitis transmission in HD centres.


Subject(s)
Hepatitis B/epidemiology , Hepatitis C/epidemiology , Kidney Diseases/therapy , Renal Dialysis , Blood Transfusion , Female , Hepatitis B/diagnosis , Hepatitis B/transmission , Hepatitis B/virology , Hepatitis C/diagnosis , Hepatitis C/transmission , Hepatitis C/virology , Humans , Kidney Diseases/diagnosis , Kidney Diseases/epidemiology , Male , Oral Surgical Procedures/adverse effects , Pakistan/epidemiology , Prevalence , Renal Dialysis/adverse effects , Risk Factors , Time Factors , Transfusion Reaction/epidemiology
16.
Sci Rep ; 6: 26479, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27217336

ABSTRACT

Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotin/metabolism , Streptococcus suis/enzymology , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Fatty Acid Synthase, Type II/chemistry , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthase, Type II/metabolism , Protein Transport , Recombinant Proteins/metabolism , Streptococcus suis/genetics
18.
mBio ; 7(2): e00177, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27048797

ABSTRACT

UNLABELLED: Colistin is an ultimate line of refuge against multidrug-resistant Gram-negative pathogens. Very recently, the emergence of plasmid-mediatedmcr-1colistin resistance has become a great challenge to global public health, raising the possibility that dissemination of themcr-1gene is underestimated and diversified. Here, we report three cases of plasmid-carried MCR-1 colistin resistance in isolates from gut microbiota of diarrhea patients. Structural and functional analyses determined that the colistin resistance is conferred purely by the singlemcr-1gene. Genetic and sequence mapping revealed thatmcr-1-harbouring plasmid reservoirs are present in diversity. Together, the data represent the first evidence of diversity inmcr-1-harbouring plasmid reservoirs of human gut microbiota. IMPORTANCE: The plasmid-mediated mobile colistin resistance gene (mcr-1) challenged greatly the conventional idea mentioned above that colistin is an ultimate line of refuge against lethal infections by multidrug-resistant Gram-negative pathogens. It is a possibility that diversified dissemination of themcr-1gene might be greatly underestimated. We report three cases of plasmid-carried MCR-1 colistin resistance in isolates from gut microbiota of diarrhea patients and functionally define the colistin resistance conferred purely by the singlemcr-1gene. Genetic and sequence mapping revealed unexpected diversity among themcr-1-harbouring plasmid reservoirs of human gut microbiota.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial , Ethanolaminephosphotransferase/genetics , Gastrointestinal Microbiome/drug effects , Gram-Negative Bacteria/drug effects , Plasmids , Bacterial Infections/microbiology , China , Diarrhea/microbiology , Feces/microbiology , Genes, Bacterial , Genetic Variation , Gram-Negative Bacteria/isolation & purification , Humans , Sequence Analysis, DNA
19.
Virus Genes ; 35(2): 443-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17354063

ABSTRACT

Pieris rapae granulovirus (PiraGV) is a baculovirus pathogenic to the insect P. rapae (Pieridae, Lepidoptera). Though being known for decades, information on the genetic organization of this virus remains limited. In an effort to characterize this virus, an 11.8 kb BamHI restriction fragment that harbors the inhibitor of apoptosis gene (iap-5) was sequenced. Our results indicate that this region contains important genes such as dnapol, lef-3, lef-9, and dnaligase that are involved in transcription and replication of the virus. The gene content and synteny in this region are highly conserved among granulovirus genomes. Phylogenetic analysis showed that PiraGV genes are more closely related to the Choristoneura occidentalis granulovirus (ChocGV) than other characterized granulovirus (GVs).


Subject(s)
Butterflies/virology , Gene Order , Granulovirus/genetics , Inhibitor of Apoptosis Proteins/genetics , Sequence Analysis, DNA , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny
20.
Virus Genes ; 34(3): 351-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-16927126

ABSTRACT

The DNA polymerase gene (dnapol) of the Pieris rapae granulovirus (PiraGV) was completely sequenced and located between 73.1 and 76 m.u. on the PiraGV genome. Its open reading frame (ORF) has 3135 nucleotides (35% G-C content) encoding 1045 amino acids with a predicted molecular mass of 122.16 kDa. Homology analysis indicated that PiraGV dnapol had 28-66% amino acid identity to that of other known baculoviruses. Comparative sequence analyses demonstrated that the PiraGV dnapol gene contains conserved 3'-5' exonuclease motifs and DNA binding functional domains of the DNA polymerase enzyme found in all known baculovirus dnapols. Northern blot results showed that in infected Pieris rapae larvae the PiraGV dnapol gene was transcribed as a predominant 3.7 kb mRNA. 5' and 3' RACE indicated that the PiraGV dnapol transcript was initiated from the thymine residue located at -378 nt upstream from the ATG start codon and terminated at the polyadenylation signal AATAAA. Phylogenetic analysis of dnapol sequences suggests that the PiraGV dnapol is more closely related to that of Cydia pomonella GV and Cryptophlebia leucotreta GV than to those of other baculoviruses.


Subject(s)
Butterflies/virology , DNA-Directed DNA Polymerase/genetics , Granulovirus/genetics , Phylogeny , Transcription, Genetic , Amino Acid Sequence , Animals , Base Sequence , DNA-Directed DNA Polymerase/metabolism , Molecular Sequence Data , RNA, Messenger/analysis , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...