Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(22): 9016-9025, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780636

ABSTRACT

Despite recent advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable primarily due to high recurrence and liver metastasis rates. Fluorescence molecular imaging technologies, combined with specific probes, have gained prominence in facilitating real-time tumor resection guided by fluorescence. Hepatocyte growth factor (HGF) is overexpressed in CRC, but the advancement of HGF fluorescent probes has been impeded by the absence of effective HGF-targeting small-molecular ligands. Herein, we present the targeted capabilities of the novel V-1-GGGK-MPA probe labeled with a near-infrared fluorescent dye, which targets HGF in CRC. The V-1-GGGK peptide exhibits high specificity and selectivity for HGF-positive in vitro tumor cells and in vivo tumors. Biodistribution analysis of V-1-GGGK-MPA revealed tumor-specific accumulation with low background uptake, yielding signal-to-noise ratio (SNR) values of tumor-to-colorectal >6 in multiple subcutaneous CRC models 12 h postinjection. Quantitative analysis confirmed the probe's high uptake in SW480 and HT29 orthotopic and liver metastatic models, with SNR values of tumor-to-colorectal and -liver being 5.6 ± 0.4, 4.6 ± 0.5, and 2.1 ± 0.3, 2.0 ± 0.5, respectively, enabling precise tumor visualization for surgical navigation. Pathological analysis demonstrated the excellent tumor boundaries discrimination capacity of the V-1-GGGK-MPA probe at the molecular level. With its rapid tumor targeting, sustained tumor retention, and precise tumor boundary delineation, V-1-GGGK-MPA merges as a promising HGF imaging agent, enriching the toolbox of intraoperative navigational fluorescent probes for CRC.


Subject(s)
Colorectal Neoplasms , Fluorescent Dyes , Hepatocyte Growth Factor , Optical Imaging , Fluorescent Dyes/chemistry , Hepatocyte Growth Factor/metabolism , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Humans , Animals , Mice , Mice, Nude , Tissue Distribution , Mice, Inbred BALB C , Cell Line, Tumor
2.
Eur J Med Chem ; 271: 116452, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38685142

ABSTRACT

Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Molecular Probes , Optical Imaging , Receptor, Angiotensin, Type 1 , Animals , Colorectal Neoplasms/pathology , Humans , Mice , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Molecular Probes/chemistry , Molecular Probes/chemical synthesis , Molecular Probes/pharmacokinetics , Receptor, Angiotensin, Type 1/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Tissue Distribution , Mice, Nude
3.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514606

ABSTRACT

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Subject(s)
Colorectal Neoplasms , MAP Kinase Signaling System , Humans , Animals , Mice , Phosphorylation , Cell Transformation, Neoplastic/genetics , Carcinogenesis , Wnt Signaling Pathway , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Colorectal Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Adaptor Proteins, Signal Transducing/metabolism
4.
Adv Sci (Weinh) ; 11(14): e2306827, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308184

ABSTRACT

Cholesterol metabolism has important roles in maintaining membrane integrity and countering the development of diseases such as obesity and cancers. Cancer cells sustain cholesterol biogenesis for their proliferation and microenvironment reprograming even when sterols are abundant. However, efficacy of targeting cholesterol metabolism for cancer treatment is always compromised. Here it is shown that CSN6 is elevated in HCC and is a positive regulator of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) of mevalonate (MVA) pathway to promote tumorigenesis. Mechanistically, CSN6 antagonizes speckle-type POZ protein (SPOP) ubiquitin ligase to stabilize HMGCS1, which in turn activates YAP1 to promote tumor growth. In orthotopic liver cancer models, targeting CSN6 and HMGCS1 hinders tumor growth in both normal and high fat diet. Significantly, HMGCS1 depletion improves YAP inhibitor efficacy in patient derived xenograft models. The results identify a CSN6-HMGCS1-YAP1 axis mediating tumor outgrowth in HCC and propose a therapeutic strategy of targeting non-alcoholic fatty liver diseases- associated HCC.


Subject(s)
Carcinoma, Hepatocellular , Hydroxymethylglutaryl-CoA Synthase , Liver Neoplasms , Repressor Proteins , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/metabolism , Cholesterol/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Liver Neoplasms/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Tumor Microenvironment , Ubiquitin/metabolism , YAP-Signaling Proteins/metabolism
5.
Adv Sci (Weinh) ; 10(27): e2300759, 2023 09.
Article in English | MEDLINE | ID: mdl-37544925

ABSTRACT

Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7ß-mediated PHGDH ubiquitination through GSK3ß deactivation, and eIF3f antagonizes FBXW7ß-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Humans , Epidermal Growth Factor , Serine
6.
Signal Transduct Target Ther ; 8(1): 187, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37202390

ABSTRACT

Continuous de novo fatty acid synthesis is required for the biosynthetic demands of tumor. FBXW7 is a highly mutated gene in CRC, but its biological functions in cancer are not fully characterized. Here, we report that FBXW7ß, a FBXW7 isoform located in the cytoplasm and frequently mutated in CRC, is an E3 ligase of fatty acid synthase (FASN). Cancer-specific FBXW7ß mutations that could not degrade FASN can lead to sustained lipogenesis in CRC. COP9 signalosome subunit 6 (CSN6), an oncogenic marker of CRC, increases lipogenesis via interacting with and stabilizing FASN. Mechanistic studies show that CSN6 associates with both FBXW7ß and FASN, and antagonizes FBXW7ß's activity by enhancing FBXW7ß autoubiquitination and degradation, which in turn prevents FBXW7ß-mediated FASN ubiquitination and degradation, thereby regulating lipogenesis positively. Both CSN6 and FASN are positively correlated in CRC, and CSN6-FASN axis, regulated by EGF, is responsible for poor prognosis of CRC. The EGF-CSN6-FASN axis promotes tumor growth and implies a treatment strategy of combination of orlistat and cetuximab. Patient-derived xenograft experiments prove the effectiveness of employing orlistat and cetuximab combination in suppressing tumor growth for CSN6/FASN-high CRC. Thus, CSN6-FASN axis reprograms lipogenesis to promote tumor growth and is a target for cancer intervening strategy in CRC.


Subject(s)
Colorectal Neoplasms , Lipogenesis , Humans , Cetuximab , Colorectal Neoplasms/genetics , Epidermal Growth Factor , F-Box-WD Repeat-Containing Protein 7/genetics , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthases/genetics , Lipogenesis/genetics , Orlistat
7.
Cancer Res ; 83(3): 414-427, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36512632

ABSTRACT

Metabolic reprogramming can contribute to colorectal cancer progression and therapy resistance. Identification of key regulators of colorectal cancer metabolism could provide new approaches to improve treatment and reduce recurrence. Here, we demonstrate a critical role for the COP9 signalosome subunit CSN6 in rewiring nucleotide metabolism in colorectal cancer. Transcriptomic analysis of colorectal cancer patient samples revealed a correlation between CSN6 expression and purine and pyrimidine metabolism. A colitis-associated colorectal cancer model established that Csn6 intestinal conditional deletion decreased tumor development and altered nucleotide metabolism. CSN6 knockdown increased the chemosensitivity of colorectal cancer cells in vitro and in vivo, which could be partially reversed with nucleoside supplementation. Isotope metabolite tracing showed that CSN6 loss reduced de novo nucleotide synthesis. Mechanistically, CSN6 upregulated purine and pyrimidine biosynthesis by increasing expression of PHGDH, a key enzyme in the serine synthesis pathway. CSN6 inhibited ß-Trcp-mediated DDX5 polyubiquitination and degradation, which in turn promoted DDX5-mediated PHGDH mRNA stabilization, leading to metabolic reprogramming and colorectal cancer progression. Butyrate treatment decreased CSN6 expression and improved chemotherapy efficacy. These findings unravel the oncogenic role of CSN6 in regulating nucleotide metabolism and chemosensitivity in colorectal cancer. SIGNIFICANCE: CSN6 deficiency inhibits colorectal cancer development and chemoresistance by downregulating PHGDH to block nucleotide biosynthesis, providing potential therapeutic targets to improve colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Humans , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Pyrimidines , Nucleotides , DEAD-box RNA Helicases
8.
Cell Discov ; 8(1): 130, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36473865

ABSTRACT

Chromodomain helicase DNA binding protein (CHD) family plays critical roles in regulating gene transcription. The family is linked to cancer disease, but the family member's role in tumorigenesis remains largely unknown. Here, we report that CHD6 is highly expressed in colorectal cancer (CRC). CHD6 knockdown inhibited cancer cell proliferation, migration, invasion, and tumorigenesis. Consistently, Villin-specific Chd6 knockout in mice attenuates cancer formation in AOM/DSS model. We found that aberrant EGF signals promoted the stability of CHD6 by diminishing ubiquitin-mediated degradation. EGF signal inhibits GSK3ß activity, which in turn prevents phosphodegron formation of CHD6, thereby hindering E3 ligase FBXW7-mediated CHD6 ubiquitination and degradation. CHD6's chromatin remodeler activity engages in binding Wnt signaling transcription factor TCF4 to facilitate the transcriptional expression of TMEM65, a mitochondrial inner membrane protein involved in ATP production and mitochondrial dynamics. In addition, Wnt signaling is also an upstream regulator of CHD6. CHD6 promoter contains TCF4 and ß-catenin binding site, and CHD6 can be transcriptionally activated by Wnt ligand to facilitate TMEM65 transcription. Thus CHD6-TMEM65 axis can be regulated by both EGF and Wnt signaling pathways through two different mechanisms. We further illustrate that CHD6-TMEM65 axis is deregulated in cancer and that co-administration of Wnt inhibitor LGK974 and the anti-EGFR monoclonal antibody cetuximab largely restricted the growth of patient-derived xenografts of CRC. Targeting CHD6-TMEM65 axis may be effective for cancer intervention.

9.
Medicine (Baltimore) ; 100(49): e27769, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34889228

ABSTRACT

BACKGROUND: Peripheral facial paralysis sequela (PFPS) is a group of sequence syndrome after the acute onset of peripheral facial paralysis. Nearly 70% of patients with peripheral facial paralysis recover completely, but nearly 30% of patients leave multiple sequelae, which have serious negative impacts on the physical and psychological health of patients. Without a high risk of side effect, acupoint catgut embedding (ACE), a common acupuncture therapy, is widely used to treat this disorder. And a number of studies have shown the efficacy of this therapy for PFPS. But in fact, the evidence of the overall effect of ACE in the treatment of PFPS is still insufficient. Therefore, the purpose of this study is to evaluate the efficiency and safety of ACE for PFPS. METHODS: Two reviewers will collect randomized controlled trials (RCTs) on ACE for PFPS by searching the following databases, including The Cochrane Library, PubMed, Web of Science, EMBASE, China Biomedical Literature (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), and Wanfang database, from their initiation to May 2021. The searching of publications will include English and Chinese without any restriction of countries and regions. Besides, 2 reviewers will independently include in studies that meet the inclusion criteria and extract data we need, then use Cochrane Collaboration's Risk of Bias Tool to assess their methodological quality. The efficacy and safety of ACE as a treatment for PFPS will be assessed according to the synthetic risk ratio (RR), odds ratio (OR), or weighted mean difference (WMD), standardized mean difference (SMD) with consistent 95% confidence intervals (95% CI). And the Review Manager 5.3 software will be adopted to conduct the statistical analysis. RESULTS: The protocol for meta-analysis will systematically evaluate the efficacy and safety of ACE for PFPS. And the final result of this search will provide sufficient evidence and an authentic assessment focusing on the problem. CONCLUSION: This search will explore whether ACE could be used as an effective and non-drug external therapy of TCM for PFPS and offer supports for clinical practice. PROSPERO REGISTRATION NUMBER: CRD42021240004.


Subject(s)
Acupuncture Points , Acupuncture Therapy/adverse effects , Catgut , Facial Paralysis/therapy , Disease Progression , Humans , Meta-Analysis as Topic , Research Design , Systematic Reviews as Topic
10.
Jpn J Clin Oncol ; 50(4): 456-464, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-31894237

ABSTRACT

BACKGROUND: Cadherin-11 (CDH11) is a type II cadherin and reported to function as an oncogene in various cancers. Our present study aims to investigate the role of CDH11 in bladder cancer (BCA). METHODS: Bioinformatics analysis was performed in four independent microarray data including 56 non-muscle-invasive bladder cancer (NMIBC) and 132 muscle-invasive bladder cancer (MIBC) tissues from Gene Expression Omnibus to screen out differentially expressed genes. Next, we detected CDH11 expression in BCA specimens and cell lines by qPCR and western blotting assays. Immunohistochemical analyses were performed in 209 paraffin-embedded BCA samples and 30 adjacent normal bladder tissues. RESULTS: Bioinformatics analysis revealed that CDH11 had a higher expression level in MIBC tissues than in NMIBC, which was consistent with our clinical BCA specimens and cell lines at both mRNA and protein levels. Immunohistochemical analysis demonstrated that over-expression of CDH11 was closely related to the histological grade, pT status, tumour size and poor outcomes of BCA patients. What's more, CDH11 (area under curve (AUC) = 0.673 and 0.735) had a better predictive value than E-cadherin (AUC = 0.629 and 0.629) and a similar discrimination with the European Organization for Research and Treatment of Cancer (EORTC) score system (AUC = 0.719 and 0.667) in evaluating potential recurrence and progression of NMIBC. Moreover, combination of CDH11 and EORTC score system was the best predictive model in predicting recurrence of NMIBC (AUC = 0.779) among the three models. CONCLUSIONS: CDH11 was a reliable therapeutic target in BCA and a useful index to predict the possibilities of recurrence and progression in NMIBC patients.


Subject(s)
Cadherins/metabolism , Muscles/pathology , Neoplasm Recurrence, Local/metabolism , Urinary Bladder Neoplasms/pathology , Aged , Cell Line, Tumor , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local/genetics , Predictive Value of Tests , Prognosis , Up-Regulation/genetics , Urinary Bladder Neoplasms/genetics
11.
Arch Biochem Biophys ; 657: 31-40, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30222953

ABSTRACT

BACKGROUND: Astragalus membranaceus is a fundamental herb in Traditional Chinese Medicine and has attracted significant attention due to its anti-inflammatory, and longevity effects. However, its anti-photoaging property remains to be defined. Autophagy plays important roles in regulating cell homeostasis and aging processes. Whether regulation of autophagy could be an efficient way for anti-photoaging is still unclear. OBJECTIVE: To investigate the effects and the possible mechanism of astragaloside on anti-photoaging in UVB-induced photoaging cell model. METHODS: Primary rat dermal fibroblasts were prepared by repeated exposures to UVB irradiation. The expression levels of cytokines and signal molecules were determined by RT-PCR and western blot. SA-ß-gal staining was performed to indicate senescence level. Intracellular reactive oxygen species and mitochondrial membrane potential were monitored by fluorescent probes DCFH-DA and JC-1. The cell viability was determined using Cell Counting Kit-8. RESULTS: Astragaloside increases the expression of collagen-I (Col1) downregulated by UVB. UVB-induced oxidative stress and photoaging could be inhibited by astragaloside. The degradation of Col1 caused by UVB irradiation through activated ERK and p38 signals could be suppressed by astragaloside. Importantly, autophagy was induced by astragaloside. Col1 could be further accumulated by chloroquine but decreased by 3-methyladenine in photoaged cell after treatment of astragaloside. CONCLUSION: Autophagy play essential roles, at least partially, in modulating the formation and degradation of Col1 in photoaging cell model. Astragaloside increases the accumulation of Col1 and protects UVB-induced photoaging cells through not only ERK and p38 inhibition but also autophagy activation, indicating the potential application of astragaloside for anti-photoaging therapy.


Subject(s)
Antioxidants/pharmacology , Autophagy/drug effects , Fibroblasts/drug effects , Quercetin/analogs & derivatives , Quercetin/pharmacology , Saponins/pharmacology , Skin Aging/drug effects , Triterpenes/pharmacology , Animals , Autophagy/radiation effects , Cell Survival/drug effects , Cellular Senescence/drug effects , Collagen Type I/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays
12.
Cell Death Dis ; 7(8): e2330, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27512951

ABSTRACT

Autophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy.


Subject(s)
Autophagy , Golgi Apparatus/metabolism , Lipids/chemistry , Microtubule-Associated Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/ultrastructure , Ionophores/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Macrolides/pharmacology , Mice , Models, Biological , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...