Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 26(1): 99, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741185

ABSTRACT

OBJECTIVES: This study aims to elucidate the transcriptomic signatures and dysregulated pathways in patients with Systemic Lupus Erythematosus (SLE), with a particular focus on those persisting during disease remission. METHODS: We conducted bulk RNA-sequencing of peripheral blood mononuclear cells (PBMCs) from a well-defined cohort comprising 26 remission patients meeting the Low Lupus Disease Activity State (LLDAS) criteria, 76 patients experiencing disease flares, and 15 healthy controls. To elucidate immune signature changes associated with varying disease states, we performed extensive analyses, including the identification of differentially expressed genes and pathways, as well as the construction of protein-protein interaction networks. RESULTS: Several transcriptomic features recovered during remission compared to the active disease state, including down-regulation of plasma and cell cycle signatures, as well as up-regulation of lymphocytes. However, specific innate immune response signatures, such as the interferon (IFN) signature, and gene modules involved in chromatin structure modification, persisted across different disease states. Drug repurposing analysis revealed certain drug classes that can target these persistent signatures, potentially preventing disease relapse. CONCLUSION: Our comprehensive transcriptomic study revealed gene expression signatures for SLE in both active and remission states. The discovery of gene expression modules persisting in the remission stage may shed light on the underlying mechanisms of vulnerability to relapse in these patients, providing valuable insights for their treatment.


Subject(s)
Lupus Erythematosus, Systemic , Transcriptome , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Humans , Female , Adult , Male , Middle Aged , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Protein Interaction Maps/genetics
2.
Cell Death Dis ; 15(3): 193, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453910

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) has been implicated in susceptibility to neurodegenerative disease. Schwann cells (SCs), the predominant glial cell type in the peripheral nervous system (PNS), play a crucial role in myelination, providing trophic support for neurons and nerve regeneration. However, the function of TREM2 in SCs has not been fully elucidated. Here, we found that TREM2 is expressed in SCs but not in neurons in the PNS. TREM2 deficiency leads to disruption of glycolytic flux and oxidative metabolism in SCs, impairing cell proliferation. The energy crisis caused by TREM2 deficiency triggers mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Combined metabolomic analysis demonstrated that energic substrates and energy metabolic pathways were significantly impaired in TREM2-deficient SCs. Moreover, TREM2 deficiency impairs energy metabolism and axonal growth in sciatic nerve, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy. These results indicate that TREM2 is a critical regulator of energy metabolism in SCs and exerts neuroprotective effects on peripheral neuropathy. TREM2 deficiency impairs glycolysis and oxidative metabolism in Schwann cells, resulting in compromised cell proliferation. The energy crisis caused by TREM2 deficiency induces mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Moreover, TREM2 deficiency disrupts the energy metabolism of the sciatic nerve and impairs support for axonal regeneration, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy (by FigDraw).


Subject(s)
Neurodegenerative Diseases , Proto-Oncogene Proteins c-akt , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Nerve Regeneration/physiology , Neurodegenerative Diseases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Curr Stem Cell Res Ther ; 19(5): 743-754, 2024.
Article in English | MEDLINE | ID: mdl-37605423

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) contribute to metastasis and drug resistance to immunotherapy in lung adenocarcinoma (LUAD), so the stemness evaluation of cancer cells is of great significance. METHOD: The single-cell RNA sequencing (scRNA-seq) data of the GSE149655 dataset were collected and analyzed. Malignant cells were distinguished by CopyKAT. CytoTRACE score of marker genes in malignant cells was counted by CytoTRACE to construct the stemness score formula. Sample stemness score in TCGA was determined by the formula and divided into high-, medium- and low-stemness score groups. LASSO and COX regression analyses were carried out to screen the key genes related to the prognosis of LUAD from the differentially expressed genes (DEGs) in high- and low-stemness score groups and a risk score model was constructed. RESULT: Seven types of cells were identified from a total of 4 samples, and 193 marker genes of 3455 malignant cells were identified. There were 1098 DEGs between low- and high-stemness score groups of TCGA, of which CPS1, CENPK, GJB3, and TPSB2 constituted gene signatures. The 4-gene signature could independently evaluate LUAD survival in the training and validation sets and showed an acceptable area under the receiver operator characteristic (ROC) curves (AUCs). CONCLUSION: This study provides insights into the cellular heterogeneity of LUAD and develops a new cancer stemness evaluation indicator and a 4-gene signature as a potential tool for evaluating the response of LUAD to immune checkpoint blockade (ICB) therapy or antineoplastic therapy.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Immunotherapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Gene Expression Profiling , Neoplastic Stem Cells , Lung Neoplasms/genetics , Lung Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...