Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 15(8): 1774212, 2020 08 02.
Article in English | MEDLINE | ID: mdl-32552556

ABSTRACT

We aimed to determine whether humic acid (HA) can alleviate the injury of millet caused by drought and its potential mechanism. Millet seeds (Jingu 21 and Zhangza 10) were soaked in different concentrations of HA (0, 50, 10, 200, and 300 mg L-1) for 12 h. The physiological and photosynthetic characteristics of millet seedlings, including growth parameters, osmotic regulators, antioxidase activity, photosynthesis, chlorophyll fluorescence, and P700 parameters, were determined before and after drought stress. HA significantly promoted the growth of millet seedlings under drought stress. Pretreatment with 100 mg L-1 or 200 mg L-1 HA significantly increased free proline, soluble protein, and activity of the antioxidant enzyme system (superoxide dismutase, peroxidase, and catalase) in both Zhangza 10 and Jingu 21. The accumulation of reactive oxygen species ([Formula: see text] and H2O2) was reduced in HA treatments compared with that of the control (P < .05). Moreover, HA (100 mg L-1) significantly increased net photosynthetic rate, stomatal conductance, effective quantum yield of photosystem II, relative photosynthetic electron transfer rate of photosystem II, and photochemical quenching. HA also reduced intercellular CO2 concentration and non-photochemical quenching. Furthermore, 200 mg L-1 HA significantly increased the maximum P700, effective quantum yield of photosystem I, and relative photosynthetic electron transfer rate of photosystem I in Zhangza 10 and decreased non-photochemical energy dissipation in Jingu 21 and Zhangza 10 under drought stress. HA promoted the growth of millet seedlings under drought stress by promoting the osmotic adjustment ability and antioxidant capacity of seedlings and increased photosynthesis.


Subject(s)
Droughts , Humic Substances , Millets/metabolism , Millets/physiology , Photosynthesis/physiology , Seedlings/metabolism , Seedlings/physiology , Reactive Oxygen Species/metabolism
2.
Sci Rep ; 7(1): 11232, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894251

ABSTRACT

To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N), chlorophyll fluorescence and P700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N, PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.


Subject(s)
Aerosols , Antioxidants/administration & dosage , Brassinosteroids/administration & dosage , Herbicides/toxicity , Plant Growth Regulators , Setaria Plant/drug effects , Steroids, Heterocyclic/administration & dosage , Antioxidants/metabolism , Brassinosteroids/metabolism , Chlorophyll/metabolism , Electron Transport , Photosynthesis/drug effects , Setaria Plant/growth & development , Setaria Plant/metabolism , Setaria Plant/physiology , Steroids, Heterocyclic/metabolism
3.
Biol Trace Elem Res ; 170(1): 245-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26201681

ABSTRACT

Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 µg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.


Subject(s)
Millets/metabolism , Pigments, Biological/metabolism , Selenious Acid/administration & dosage , Selenium/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...