Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 24(3): e13911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38063371

ABSTRACT

PCR-based high-throughput sequencing has permitted comprehensive resolution analyses of zooplankton diversity dynamics. However, significant methodological issues still surround analyses of complex bulk community samples, not least as in prevailing PCR-based approaches. Marine drifting animals-zooplankton-play essential ecological roles in the pelagic ecosystem, transferring energy and elements to higher trophic levels, such as fishes, cetaceans and others. In the present study, we collected 48 size-fractionated zooplankton samples in the vicinity of a coral reef island with environmental gradients. To investigate the spatiotemporal dynamics of zooplankton diversity patterns and the effect of PCR amplification biases across these complex communities, we first took metatranscriptomics approach. Comprehensive computational analyses revealed a clear pattern of higher/lower homogeneity in smaller/larger zooplankton compositions across samples respectively. Our study thus suggests changes in the role of dispersal across the sizes. Next, we applied in silico PCR to the metatranscriptomics datasets, in order to estimate the extent of PCR amplification bias. Irrespective of stringency criteria, we observed clear separations of size fraction sample clusters in both metatranscriptomics and in silico datasets. In contrast, the pattern-smaller-fractioned communities had higher compositional homogeneity than larger ones-was observed in the metatranscriptomics data but not in the in silico datasets. To investigate this discrepancy further, we analysed the mismatches of widely used mitochondrial CO1 primers and identified priming site mismatches likely driving PCR-based biases. Our results suggest the use of metatranscriptomics or, although less ideal, redesigning the CO1 primers is necessary to circumvent these issues.


Subject(s)
Coral Reefs , Ecosystem , Animals , Zooplankton/genetics , Fishes , Polymerase Chain Reaction
2.
Sci Rep ; 12(1): 9973, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705661

ABSTRACT

High-throughput sequencing has enabled genome skimming approaches to produce complete mitochondrial genomes (mitogenomes) for species identification and phylogenomics purposes. In particular, the portable sequencing device from Oxford Nanopore Technologies (ONT) has the potential to facilitate hands-on training from sampling to sequencing and interpretation of mitogenomes. In this study, we present the results from sampling and sequencing of six gastropod mitogenomes (Aplysia argus, Cellana orientalis, Cellana toreuma, Conus ebraeus, Conus miles and Tylothais aculeata) from a graduate level biodiversity course. The students were able to produce mitogenomes from sampling to annotation using existing protocols and programs. Approximately 4 Gb of sequence was produced from 16 Flongle and one MinION flow cells, averaging 235 Mb and N50 = 4.4 kb per flow cell. Five of the six 14.1-18 kb mitogenomes were circlised containing all 13 core protein coding genes. Additional Illumina sequencing revealed that the ONT assemblies spanned over highly AT rich sequences in the control region that were otherwise missing in Illumina-assembled mitogenomes, but still contained a base error of one every 70.8-346.7 bp under the fast mode basecalling with the majority occurring at homopolymer regions. Our findings suggest that the portable MinION device can be used to rapidly produce low-cost mitogenomes onsite and tailored to genomics-based training in biodiversity research.


Subject(s)
Gastropoda , Genome, Mitochondrial , Nanopore Sequencing , Nanopores , Animals , Biodiversity , Curriculum , Gastropoda/genetics , Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...