Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 21(1): 236, 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37482608

ABSTRACT

Therapeutic tumor vaccines have attracted considerable attention in the past decade; they can induce tumor regression, eradicate minimal residual disease, establish lasting immune memory and avoid non-specific and adverse side effects. However, the challenge in the field of therapeutic tumor vaccines is ensuring the delivery of immune components to the lymph nodes (LNs) to activate immune cells. The clinical response rate of traditional therapeutic tumor vaccines falls short of expectations due to inadequate lymph node delivery. With the rapid development of nanotechnology, a large number of nanoplatform-based LN-targeting nanovaccines have been exploited for optimizing tumor immunotherapies. In addition, some nanovaccines possess non-invasive visualization performance, which is benefit for understanding the kinetics of nanovaccine exposure in LNs. Herein, we present the parameters of nanoplatforms, such as size, surface modification, shape, and deformability, which affect the LN-targeting functions of nanovaccines. The recent advances in nanoplatforms with different components promoting LN-targeting are also summarized. Furthermore, emerging LNs-targeting nanoplatform-mediated imaging strategies to both improve targeting performance and enhance the quality of LN imaging are discussed. Finally, we summarize the prospects and challenges of nanoplatform-based LN-targeting and /or imaging strategies, which optimize the clinical efficacy of nanovaccines in tumor immunotherapies.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Lymph Nodes , Neoplasms/therapy , Immunotherapy , Nanotechnology
2.
Anal Bioanal Chem ; 415(10): 1841-1854, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36799979

ABSTRACT

Nowadays, screening for endometrial cancer (EC) primarily relies on clinical symptoms and imaging, which makes it difficult to detect early-stage disease. Here, we conducted a widely targeted lipidomic analysis of 38 human serum samples in a discovery set and 40 human serum samples in a validation set to profile the dysregulated lipid species and establish lipid biomarkers for early-stage EC. This comprehensive lipidomic determination of 616 serum lipids indicated significant differences between early-stage EC patients and healthy controls. Three phases of lipid biomarker investigation (discovery, validation, and determination of the lipid biomarker panel) were performed, which revealed the upregulation of some sphingolipid, glycerophospholipid, and glycerolipids and downregulation of some carnitine. Consistently, the perturbation of sphingolipid and glycerophospholipid metabolism was also observed from pathway enrichment analysis. Moreover, a lipid biomarker panel, including ursodeoxycholic acid, PC(O-14:0_20:4), and Cer(d18:1/18:0), was established. This panel was assessed as an effective diagnostic model to distinguish early-stage EC patients from healthy controls and atypical endometrial hyperplasia patients within the area under the receiver operating characteristic curve (AUC) reaching 0.903 and 0.928, respectively. In particular, the comparison results of the diagnostic efficacy indicated that the lipid biomarker panel was superior to clinically established indicators for EC diagnosis, including HE4, CA125, CA153, and CA199, suggesting that it could be used as an excellent supplementary method for the diagnosis of early-stage EC. In conclusion, we established a novel and non-invasive lipid biomarker for early-stage EC detection and these findings may provide new insight into the pathological mechanisms of EC.


Subject(s)
Endometrial Neoplasms , Tandem Mass Spectrometry , Female , Humans , Biomarkers, Tumor , Lipidomics , Chromatography, High Pressure Liquid , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/pathology , Lipids , Sphingolipids , Glycerophospholipids
3.
Front Cell Dev Biol ; 10: 941750, 2022.
Article in English | MEDLINE | ID: mdl-36092724

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.

4.
Cancer Sci ; 113(10): 3405-3416, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35879596

ABSTRACT

Most breast cancer-related deaths are caused by metastasis in vital organs including the lungs. Development of supportive metastatic microenvironments, referred to as premetastatic niches (PMNs), in certain distant organs before arrival of metastatic cells, is critical in metastasis. However, the mechanisms of PMN formation are not fully clear. Here, we demonstrated that chemoattractant C-C motif chemokine ligand 2 (CCL2) could be stimulated by heat shock protein 60 (HSP60) on the surface of murine 4 T1 breast cancer cell-released LC3+ extracellular vesicles (LC3+ EVs) via the TLR2-MyD88-NF-κB signal cascade in lung fibroblasts, which subsequently promoted lung PMN formation through recruiting monocytes and suppressing T cell function. Consistently, reduction of LC3+ EV release or HSP60 level or neutralization of CCL2 markedly attenuated PMN formation and lung metastasis. Furthermore, the number of circulating LC3+ EVs and HSP60 level on LC3+ EVs in the plasma of breast cancer patients were positively correlated with disease progression and lung metastasis, which might have potential value as biomarkers of lung metastasis in breast cancer patients (AUC = 0.898, 0.694, respectively). These findings illuminate a novel mechanism of PMN formation and might provide therapeutic targets for anti-metastasis therapy for patients with breast cancer.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Lung Neoplasms , Animals , Breast Neoplasms/pathology , Chaperonin 60/metabolism , Chemotactic Factors/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Ligands , Lung Neoplasms/pathology , Mice , Microtubule-Associated Proteins , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Neoplasm Metastasis/pathology , Toll-Like Receptor 2 , Tumor Microenvironment
5.
Cancer Res ; 82(10): 1991-2002, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35364609

ABSTRACT

The immunologic effects of chemotherapy-induced tumor cell death are not completely understood. Accumulating evidence suggests that phagocytic clearance of apoptotic tumor cells, also known as efferocytosis, is an immunologically silent process, thus maintaining an immunosuppressive tumor microenvironment (TME). Here we report that, in the breast tumor microenvironment, thymosin α-1 (Tα-1) significantly reverses M2 polarization of IL10-producing tumor-associated macrophages (TAM) during efferocytosis induced by apoptotic cells. Mechanistically, Tα-1, which bound to phosphatidylserine on the surface of apoptotic tumor cells and was internalized by macrophages, triggered the activation of SH2-containing inositol 5'-phosphatase 1 (SHIP1) through the lysosomal Toll-like receptor 7 (TLR7)/MyD88 pathway, subsequently resulting in dephosphorylation of efferocytosis-activated TBK1 and reduction of efferocytosis-induced IL10. Tα-1 combined with epirubicin chemotherapy markedly suppressed tumor growth in an in vivo breast cancer model by reducing macrophage-derived IL10 and enhancing the number and function of tumor-infiltrating CD4+ and CD8+ T cells. In conclusion, Tα-1 improved the curative effect of chemotherapy by reversing M2 polarization of efferocytosis-activated macrophages, suggesting that Tα-1 injection immediately after chemotherapy may contribute to highly synergistic antitumor effects in patients with breast cancer. SIGNIFICANCE: Thymosin α-1 improves the curative effect of chemotherapy by reversing efferocytosis-induced M2 polarization of macrophages via activation of a TLR7/SHIP1 axis.


Subject(s)
Breast Neoplasms , Toll-Like Receptor 7 , Breast Neoplasms/drug therapy , Female , Humans , Interleukin-10 , Thymalfasin , Tumor Microenvironment , Tumor-Associated Macrophages
6.
Front Immunol ; 12: 707298, 2021.
Article in English | MEDLINE | ID: mdl-34589084

ABSTRACT

We previously reported that enriched ubiquitinated proteins (UPs) from tumor cells have the potential to be used as immunotherapy vaccine against cancer. Here we enriched UPs from epirubicin (EPB)-induced multi-drug-resistant cancer stem-like breast cancer cell line (4T1/EPB) and tested the efficacy of α-Al2O3-UPs-4T1/EPB (short for UPs-4T1/EPB) as therapeutic vaccine alone and in combination with the stimulator of interferon genes (STING) agonist in mice with drug-resistant and metastatic breast cancer. Vaccination with UPs-4T1/EPB exerted profound anti-tumor effects through augmented specific CD8+ T cell responses and amplified T cell receptor diversity of tumor-infiltrating lymphocytes (TILs). Importantly, the combination with STING agonist further facilitated the migration of mature CD8α+ dendritic cells to the lymph nodes and the infiltration of TILs within tumors, resulting in primary tumor regression and pulmonary metastasis eradication in mice. Moreover, the cured mice were completely resistant against a subsequent rechallenge with the same tumor. Our study indicates that this novel combinatorial immunotherapy with UPs-4T1/EPB vaccine and STING agonist is effective in mice with drug-resistant and metastatic breast cancer.


Subject(s)
Antigens, Neoplasm/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/pathology , Cancer Vaccines/pharmacology , Membrane Proteins/agonists , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Antineoplastic Combined Chemotherapy Protocols/immunology , Cancer Vaccines/immunology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/immunology , Female , Mice , Mice, Inbred BALB C , Neoplastic Stem Cells/metabolism , Ubiquitinated Proteins/immunology , Ubiquitinated Proteins/pharmacology , Xanthones/pharmacology
7.
Cancer Immunol Immunother ; 70(2): 463-474, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32809049

ABSTRACT

Dendritic cell (DC) vaccine has been proved to be an effective way in cancer immunotherapy in both preclinical and clinical studies. However, limitations in DC isolation and culture have hampered its practice and promoted the development of other antigen-presenting cells (APCs) sources to fulfill that role. Our previous studies have shown that B cells loaded by tumor cell-derived autophagosomes, which we named as DRibbles (defective ribosomal products-containing blebs), could reactivate DC-induced effector T cell response. In this study, the roles of DRibble-loaded B cells in priming naïve CD8+ T cell responses and controlling tumors were investigated. We found that high-mobility group box 1 protein (HMGB1) on DRibbles was involved in DRibble-induced B cell activation, and the DRibble-triggered B cell phagocytosis via the caveolae-mediated endocytosis pathway. By using OT-I mouse-derived T cells, we demonstrated that DRibble-loaded B cells could activate specific naïve CD8+ T cells in vitro and ex vivo. In a tumor-bearing mouse model, DRibble-loaded B cells elicited systemic antitumor immunity and significantly suppressed the tumor growth. Moreover, the antitumor efficacy of DRibble-loaded B cells was enhanced when they were combined with CpG and anti-CD40 stimulation. These results suggest that DRibble-loaded B cells represent a viable and practical therapeutic vaccination strategy that might have important clinical implications for tumor immunotherapy.


Subject(s)
Autophagosomes/immunology , B-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Dendritic Cells/metabolism , Immunotherapy/methods , Neoplasms/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Humans , Mice
8.
Life Sci ; 260: 118489, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32976882

ABSTRACT

AIMS: Cervical cancer (CC) is a common tumor of women worldwide. Here, we conducted a non-targeted lipidomic study to discover novel lipid biomarkers for early-stage CC. MAIN METHODS: The lipidomic analysis of 71 samples in discovery set and 72 samples in validation set were performed by coupling ultra-high-pressure liquid chromatography (UHPLC) with quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS). Lipids with variable importance (VIP) values greater than 1, adj. p < 0.05 (the adjusted p value obtained from false discovery rate correction) and fold change (FC) higher than 1.5 were reserved as potential biomarkers. Subsequently, receiver operating characteristic (ROC) curve and binary logistic regression were implemented to assess the diagnostic potential of these biomarkers and to acquire the best biomarker combination. KEY FINDINGS: A lipid biomarker panel, including phosphatidylcholine (PC, PC 14:0/18:2) and phosphatidylethanolamine (PE, PE 15:1e/22:6 and PE 16:1e/18:2), was established. This panel was effective in distinguishing between CC and non-CC (squamous intraepithelial lesions [SIL] and healthy controls) within the area under the ROC curve (AUC), sensitivity, and specificity reaching 0.966, 0.952, and 0.860 for discovery set and 0.961, 0.920, and 0.915 for external validation set. Furthermore, this panel was also capable of discriminating early-stage CC from SIL with AUC, sensitivity, and specificity reaching 0.946, 0.952, and 0.800 for discovery set and 0.956, 0.960, and 0.815 for external validation set. SIGNIFICANCE: The combination of PC 14:0/18:2, PE 15:1e/22:6, and PE 16:1e/18:2 could serve as a promising serum biomarker for discriminating early-stage CC from SIL and healthy subjects.


Subject(s)
Biomarkers, Tumor/blood , Lipidomics/methods , Lipids/blood , Uterine Cervical Neoplasms/blood , Adult , Case-Control Studies , Chromatography, High Pressure Liquid , Female , Humans , Mass Spectrometry/methods , Middle Aged , Multivariate Analysis , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood , Reproducibility of Results , Squamous Intraepithelial Lesions/blood , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology
9.
Int J Nanomedicine ; 15: 1021-1035, 2020.
Article in English | MEDLINE | ID: mdl-32103954

ABSTRACT

BACKGROUND AND AIM: We have previously identified ubiquitinated proteins (UPs) from tumor cell lysates as a promising vaccine for cancer immunotherapy in different mouse tumor models. In this study, we aimed at developing a highly efficient therapeutic adjuvant built-in nanovaccine (α-Al2O3-UPs) by a simple method, in which UPs from tumor cells could be efficiently and conveniently enriched by α-Al2O3 nanoparticles covalently coupled with Vx3 proteins (α-Al2O3-CONH-Vx3). METHODS: The α-Al2O3 nanoparticles were modified with 4-hydroxybenzoic acid followed by coupling with ubiquitin-binding protein Vx3. It was then used to enrich UPs from 4T1 cell lysate. The stability and the efficiency for the UPs enrichment of α-Al2O3-CONH-Vx3 were examined. The ability of α-Al2O3-UPs to activate DCs was examined in vitro subsequently. The splenocytes from the vaccinated mice were re-stimulated with inactivated tumor cells, and the IFN-γ secretion was detected by ELISA and flow cytometry. Moreover, the therapeutic efficacy of α-Al2O3-UPs, alone and in combination with chemotherapy, was examined in 4T1 tumor-bearing mice. RESULTS: Our results showed that α-Al2O3-UPs were successfully synthesized and abundant UPs from tumor cell lysate were enriched by the new method. In vitro study showed that compared to the physical mixture of α-Al2O3 nanoparticles and UPs (α-Al2O3+UPs), α-Al2O3-UPs stimulation resulted in higher upregulations of CD80, CD86, MHC class I, and MHC class II on DCs, indicating the higher ability of DC activation. Moreover, α-Al2O3-UPs elicited a more effective immune response in mice, demonstrated by higher IFN-γ secretion than α-Al2O3+UPs. Furthermore, α-Al2O3-UPs also exhibited a more potent effect on tumor growth inhibition and survival prolongation in 4T1 tumor-bearing mice. Notably, when in combination with low dose chemotherapy, the anti-tumor effect was further enhanced, rather than using α-Al2O3-UPs alone. CONCLUSION: This study presents an adjuvant built-in nanovaccine generated by a new simple method that can be potentially applied to cancer immunotherapy and lays the experimental foundation for future clinical application.


Subject(s)
Cancer Vaccines/pharmacology , Nanoparticles/chemistry , Ubiquitinated Proteins/chemistry , Adjuvants, Immunologic/pharmacology , Aluminum Oxide/chemistry , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/immunology , Female , Interferon-gamma/metabolism , Mice, Inbred BALB C , Nanoparticles/therapeutic use , Neoplasms, Experimental/therapy , Parabens/chemistry , Ubiquitinated Proteins/immunology
10.
J Immunother Cancer ; 7(1): 311, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31747946

ABSTRACT

BACKGROUND: TNF receptor family agonists and checkpoint blockade combination therapies lead to minimal tumor clearance of poorly immunogenic tumors. Therefore, a need to enhance the efficacy of this combination therapy arises. Antigen-presenting cells (APCs) present antigen to T cells and steer the immune response through chemokine and cytokine secretion. DRibbles (DR) are tumor-derived autophagosomes containing tumor antigens and innate inflammatory adjuvants. METHODS: Using preclinical murine lung and pancreatic cancer models, we assessed the triple combination therapy of GITR agonist and PD-1 blocking antibodies with peritumoral injections of DRibbles-pulsed-bone marrow cells (BMCs), which consisted mainly of APCs, or CD103+ cross-presenting dendritic cells (DCs). Immune responses were assessed by flow cytometry. FTY720 was used to prevent T-cell egress from lymph nodes to assess lymph node involvement, and MHC-mismatched-BMCs were used to assess the necessity of antigen presentation by the peritumorally-injected DR-APCs. RESULTS: Tritherapy increased survival and cures in tumor-bearing mice compared to combined antibody therapy or peritumoral DR-BMCs alone. Peritumorally-injected BMCs remained within the tumor for at least 14 days and tritherapy efficacy was dependent on both CD4+ and CD8+ T cells. Although the overall percent of tumor-infiltrating T cells remained similar, tritherapy increased the ratio of effector CD4+ T cells-to-regulatory T cells, CD4+ T-cell cytokine production and proliferation, and CD8+ T-cell cytolytic activity in the tumor. Despite tritherapy-induced T-cell activation and cytolytic activity in lymph nodes, this T-cell activation was not required for tumor regression and enhanced survival. Replacement of DR-BMCs with DR-pulsed-DCs in the tritherapy led to similar antitumor effects, whereas replacement with DRibbles was less effective but delayed tumor growth. Interestingly, peritumoral administration of DR-pulsed MHC-mismatched-APCs in the tritherapy led to similar antitumor effects as MHC-matched-APCs, indicating that the observed enhanced antitumor effect was mediated independently of antigen presentation by the administered APCs. CONCLUSIONS: Overall, these results demonstrate that peritumoral DR-pulsed-BMC/DC administration synergizes with GITR agonist and PD-1 blockade to locally modulate and sustain tumor effector T-cell responses independently of T cell priming and perhaps through innate inflammatory modulations mediated by the DRibbles adjuvant. We offer a unique approach to modify the tumor microenvironment to benefit T-cell-targeted immunotherapies.


Subject(s)
Antibodies/therapeutic use , Antigen-Presenting Cells/immunology , Bone Marrow Cells/immunology , Glucocorticoid-Induced TNFR-Related Protein/antagonists & inhibitors , Lung Neoplasms/therapy , Pancreatic Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antigen Presentation , Antigens, Neoplasm/immunology , Cell Line, Tumor , Cytokines/immunology , Glucocorticoid-Induced TNFR-Related Protein/agonists , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Phagosomes/immunology , T-Lymphocytes/immunology
11.
Immunol Lett ; 216: 36-42, 2019 12.
Article in English | MEDLINE | ID: mdl-31568811

ABSTRACT

As common features of human solid tumors, hypoxia and nutrient starvation play multifaceted roles in cancer progress. However, the mechanisms are far from clear. Our previous work has indicated that tumor cell-released autophagosomes (TRAPs) are sufficient to suppress anti-tumor immune response in mouse by inducing IL-10-producing B cells through high-mobility group B1 (HMGB1). Here, we hypothesized that hypoxia or starvation might exert immunosuppressive effect through upregulating HMGB1 on TRAPs. We found that HMGB1 on TRAPs from human hepatocellular carcinoma cell line HepG2 played a significant role in IL-10-producing B cell induction. HMGB1 in tumor cells was upregulated under hypoxia and starvation, but only hypoxia significantly enhanced the level of HMGB1 present on the surfaces of TRAPs. Moreover, hypoxic TRAPs induced more IL-10-producing B cells with suppressive activities on CD4+ and CD8+ T cells. The finding indicates the role of TRAPs as a messenger of hypoxic response to enhance immunosuppression in tumor microenvironment.


Subject(s)
Autophagosomes/immunology , B-Lymphocytes/metabolism , HMGB1 Protein/metabolism , Interleukin-10/genetics , Neoplasms/immunology , Autophagosomes/metabolism , B-Lymphocytes/immunology , Cell Communication/genetics , Cell Communication/immunology , Cell Hypoxia/immunology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/immunology , Hep G2 Cells , Humans , Interleukin-10/immunology , Interleukin-10/metabolism , Neoplasms/genetics , Neoplasms/pathology , T-Lymphocytes/immunology , Tumor Escape , Up-Regulation/immunology
12.
J Immunother Cancer ; 7(1): 178, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300052

ABSTRACT

BACKGROUND: CD4+ T cells are critical effectors of anti-tumor immunity, but how tumor cells influence CD4+ T cell effector function is not fully understood. Tumor cell-released autophagosomes (TRAPs) are being recognized as critical modulators of host anti-tumor immunity during tumor progression. Here, we explored the mechanistic aspects of TRAPs in the modulation of CD4+ T cells in the tumor microenvironment. METHODS: TRAPs isolated from tumor cell lines and pleural effusions or ascites of cancer patients were incubated with CD4+ T cells to examine the function and mechanism of TRAPs in CD4+ T cell differentiation and function. TRAPs-elicited CD4+ T cells were tested for their suppression of effector T cell function, induction of regulatory B cells, and promotion of tumorigenesis and metastasis in a mouse model. RESULTS: Heat shock protein 90α (HSP90α) on the surface of TRAPs from malignant effusions of cancer patients and tumor cell lines stimulated CD4+ T cell production of IL-6 via a TLR2-MyD88-NF-κB signal cascade. TRAPs-induced autocrine IL-6 further promoted CD4+ T cells secretion of IL-10 and IL-21 via STAT3. Notably, TRAPs-elicited CD4+ T cells inhibited CD4+ and CD8+ effector T cell function in an IL-6- and IL-10-dependent manner and induced IL-10-producing regulatory B cells (Bregs) via IL-6, IL-10 and IL-21, thereby promoting tumor growth and metastasis. Consistently, inhibition of tumor autophagosome formation or IL-6 secretion by CD4+ T cells markedly retarded tumor growth. Furthermore, B cell or CD4+ T cell depletion impeded tumor growth by increasing effector T cell function. CONCLUSIONS: HSP90α on the surface of TRAPs programs the immunosuppressive functions of CD4+ T cells to promote tumor growth and metastasis. TRAPs or their membrane-bound HSP90α represent important therapeutic targets to reverse cancer-associated immunosuppression and improve immunotherapy.


Subject(s)
Autophagosomes/immunology , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , HSP90 Heat-Shock Proteins/immunology , Neoplasms/immunology , Toll-Like Receptor 2/immunology , Animals , Cell Line, Tumor , Female , Humans , Immunosuppression Therapy , Mice, Inbred C57BL , Mice, Transgenic
13.
J Immunother Cancer ; 6(1): 151, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563569

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) facilitate tumor progression via establishment of an immunosuppressive tumor microenvironment (TME). However, it is poorly understood how tumor cells could functionally modulate TAMs. Our previous work indicated that tumor cell-released autophagosomes (TRAPs), a type of LC3-II+ double-membrane extracellular vesicles (EVs) was sufficient to suppress anti-tumor immune responses by inducing IL-10-producing B cells and immune suppressive neutrophils. Here, we hypothesized that TRAPs may participate in regulating macrophage polarization. METHODS: TRAPs isolated from multiple murine tumor cell lines and pleural effusions or ascites of cancer patients were incubated with bone marrow-derived macrophages (BMDMs) and monocytes, respectively. Cellular phenotypes were examined by flow cytometry, ELISA and quantitative PCR. TRAPs treated BMDMs were tested for the ability to suppress T-cell proliferation in vitro, and for promotion of tumor growth in vivo. Transwell chamber and neutralization antibodies were added to ascertain the inhibitory molecules expressed on BMDMs exposed to TRAPs. Knockout mice were used to identify the receptors responsible for TRAPs-induced BMDMs polarization and the signaling mechanism was examined by western blot. Autophagy-deficient tumors were profiled for phenotypic changes of TAMs and IFN-γ secretion of T cells by flow cytometry. The phenotype of monocytes from pleural effusions or ascites of cancer patients was assessed by flow cytometry. RESULTS: TRAPs converted macrophages into an immunosuppressive M2-like phenotype characterized by the expression of PD-L1 and IL-10. These macrophages inhibited the proliferation of both CD4+ and CD8+ T cells in vitro, and promoted tumor growth mainly through PD-L1 in vivo. TRAPs-induced macrophage polarization was dependent on TLR4-mediated MyD88-p38-STAT3 signaling. In vivo studies indicated that disruption of autophagosome formation in B16F10 cells by silencing the autophagy gene Beclin1 resulted in a remarkable delay in tumor growth, which was associated with reduced autophagosome secretion, TAMs reprogramming and enhanced T cell activation. Moreover, the levels of LC3B+ EVs appeared to correlate significantly with up-regulation of PD-L1 and IL-10 in matched monocytes from effusions or ascites of cancer patients, and TRAPs isolated from these samples could also polarize monocytes to an M2-like phenotype with increased expression of PD-L1, CD163 and IL-10, decreased expression of HLA-DR, and T cell-suppressive function. CONCLUSIONS: These findings suggest the TRAPs-PD-L1 axis as a major driver of immunosuppression in the TME by eliciting macrophage polarization towards an M2-like phenotype, and highlight the potential novel therapeutic approach of simultaneously targeting autophagy and PD-L1.


Subject(s)
Autophagosomes/immunology , Autophagosomes/metabolism , B7-H1 Antigen/metabolism , Immune Tolerance , Macrophages/immunology , Macrophages/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Animals , Autophagosomes/ultrastructure , Autophagy , B7-H1 Antigen/genetics , Biomarkers , Cell Line, Tumor , Female , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Models, Biological , Myeloid Differentiation Factor 88/metabolism , Neoplasms/pathology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Toll-Like Receptor 4/metabolism , Tumor Microenvironment/immunology
14.
Oncoimmunology ; 7(6): e1438108, 2018.
Article in English | MEDLINE | ID: mdl-29872581

ABSTRACT

Our previous studies have confirmed that tumor cell-released autophagosomes (TRAP) could induce the differentiation of B cells into IL-10+ regulatory B cells (Bregs) with suppressive activities on T lymphocytes. However, the mechanism of TRAP-mediated immune suppression is still largely unclear. Herein, we sought to assess the immunomodulatory effect of TRAPs on human neutrophils, a major immune cell type that infiltrates human tumor tissues. We found that TRAPs enriched from malignant effusions or ascites of cancer patients and tumor cell lines were rapidly and effectively phagocytized by neutrophils through macropinocytosis and promoted neutrophil apoptosis via reactive oxygen species (ROS) generation and caspase-3 activation. Moreover, the apoptotic neutrophils that have phagocytized TRAPs inhibited the proliferation and activation of CD4+ T and CD8+ T cells in a cell contact- and ROS-dependent manner. These findings define a novel TRAP-mediated mechanism in neutrophils that potentially suppresses the anti-tumor T cell immunity and highlight TRAPs as an important target for future tumor immunotherapy.

15.
Int J Nanomedicine ; 13: 3353-3365, 2018.
Article in English | MEDLINE | ID: mdl-29922056

ABSTRACT

BACKGROUND: The aim of this study was to explore the feasibility of delivering tumor antigens and enhancing the antigen cross-presentation of dendritic cells (DCs) by aluminum hydroxide nanoparticle with polyethyleneimine (PEI) modification (LV@HPA/PEI). MATERIALS AND METHODS: The LV@HPA nanoparticles were modified by PEI first, then the influence of LV@HPA/PEI on DCs was examined. The distinct expression of ovalbumin (OVA) protein transported into DCs by LV@HPA/PEI was observed by flow cytometry and Western blot. The biocompatibility of LV@HPA/PEI, maturity and antigen cross-presentation of DCs was observed in vitro. Tumor derived autophagosomes (DRibbles) combined with LV@HPA/PEI were loaded into DCs, and DC vaccines were used to immunize mice. The percentage of CD3+CD8+IFN-γ+ T cells in immunized mice was determined by flow cytometry. Additionally, the functional properties of the LV@HPA/PEI-DRibble-DCs vaccine were examined in vivo in PancO2 tumor-bearing mice. RESULTS: In our study, we described how LV@HPA/PEI can be a functionalized antigen delivery system with notable antigen transport effect and negligible cytotoxicity. It was found that LV@HPA/PEI could be easily internalized into DCs to assist antigen release into the cytoplasm. In addition, DCs matured gradually after loading with LV@HPA/PEI-OVA, which increased significantly the cytokine IL-12 secretion and expression of surface molecules CD80 and CD86. Interestingly, DCs loaded with LV@HPA/PEI-DRibbles could promote the activation of tumor-specific T cells both in murine and in human T cells. In the following in vivo experiments, the vaccine of LV@HPA/PEI-DRibble-DCs significantly inhibited tumor growth and improved the survival rate of the PancO2 tumor-bearing mice. CONCLUSION: We established a high-performance anti-tumor vaccine of DCs loaded with LV@ HPA/PEI nanoparticles and tumor-associated antigens in autophagosomes (DRibbles), which could serve as a therapeutic strategy in cancer immunotherapy.


Subject(s)
Aluminum Hydroxide/chemistry , Cross-Priming/immunology , Dendritic Cells/immunology , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Animals , Antigen Presentation , Antigens, Neoplasm/metabolism , Cancer Vaccines/immunology , Cross-Priming/drug effects , Humans , Immunotherapy , Mice, Inbred C57BL , Ovalbumin/chemistry , Ovalbumin/immunology , Ovalbumin/pharmacokinetics , Polyethyleneimine/pharmacology , T-Lymphocytes/immunology
16.
Bioconjug Chem ; 29(3): 786-794, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29382195

ABSTRACT

A simple and effective strategy was developed to enrich ubiquitinated proteins (UPs) from cancer cell lysate using the α-Al2O3 nanoparticles covalently linked with ubiquitin binding protein (Vx3) (denoted as α-Al2O3-Vx3) via a chemical linker. The functionalized α-Al2O3-Vx3 showed long-term stability and high efficiency for the enrichment of UPs from cancer cell lysates. Flow cytometry analysis results indicated dendritic cells (DCs) could more effectively phagocytize the covalently linked α-Al2O3-Vx3-UPs than the physical mixture of α-Al2O3 and Vx3-UPs (α-Al2O3/Vx3-UPs). Laser confocal microscopy images revealed that α-Al2O3-Vx3-UPs localized within the autophagosome of DCs, which then cross-presented α-Al2O3-Vx3-UPs to CD8+ T cells in an autophagosome-related cross-presentation pathway. Furthermore, α-Al2O3-Vx3-UPs enhanced more potent antitumor immune response and antitumor efficacy than α-Al2O3/cell lysate or α-Al2O3/Vx3-UPs. This work highlights the potential of using the Vx3 covalently linked α-Al2O3 as a simple and effective platform to enrich UPs from cancer cells for the development of highly efficient therapeutic cancer vaccines.


Subject(s)
Aluminum Oxide/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/prevention & control , Ubiquitinated Proteins/therapeutic use , Aluminum Oxide/chemistry , Aluminum Oxide/immunology , Animals , Autophagosomes/immunology , Cell Line, Tumor , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immobilized Proteins/therapeutic use , Mice, Inbred BALB C , Nanoparticles/chemistry , Neoplasms/immunology , Phagocytosis , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/immunology
17.
Oncoimmunology ; 5(7): e1180485, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27622036

ABSTRACT

Recent studies have shown that tumor cells can release autophagosomes, which transport a broad array of biologically active molecules with potential modulatory effects on immune cell functions. In this study, we aimed to investigate the role of tumor cells-released autophagosomes (i.e. TRAP) in regulating B cell differentiation and function. TRAPs from murine tumor cell lines were found to induce splenic B cells to differentiate into IL-10-producing regulatory B cells (Bregs) with a distinct phenotype of CD1d(+) CD5(+), which could potently inhibit CD8(+) and CD4(+) T cell responses in IL-10-depedent manner both in vitro and in vivo. Notably, adoptive transfer of TRAP-induced Bregs abrogated the immune response and antitumor effect induced by OVA-loaded DC vaccinations in E.G7-OVA-bearing mouse model. Mechanistic studies revealed that membrane-bound high-mobility group B1 (HMGB1) on the intact TRAPs was crucial for inducing Breg differentiation via the activation of TLR2-MyD88-NF-κB signal pathway in B cells. Moreover, TRAPs enriched from malignant effusions of cancer patients could induce human B cells to differentiate into IL-10-producing B cells with immunoregulatory functions, the frequency of which were positively correlated with the HMGB1 levels on TRAPs. Together, our findings have demonstrated that TRAPs promote the generation of IL-10(+) Bregs, which may contribute to the suppression of antitumor immunity.

18.
Exp Cell Res ; 331(2): 320-30, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25447440

ABSTRACT

Our previous studies have showed that tumor-derived autophagosomes (termed "DRibbles") induce B cell activation, resulting in antibody production and cytokine secretion. Unexpectedly, we found that unfractionated splenocytes produced a higher level of antibody and cytokine than that of purified B cells. In the current study, we investigated the role of accessory cells in DRibbles-induced B cell activation. We found that cognate macrophages, but not T cells, significantly enhanced the B cell activities. Such an enhancement required cell-cell contact. Furthermore, DRibbles stimulation up-regulated CD40L expression on macrophages, resulting in increased level of CD40 expressed on B cells. The accessory role of macrophages in DRibbles-activated B cells is critically dependent on the CD40/CD40L interaction. In addition, the effects of macrophages were found to be largely dependent on TLR4 and MyD88 signaling pathway. Finally, our results showed that macrophages were able to enhance the antigen presentation function of B cells for specific T cell stimulation. Thus, these results suggest that macrophages play an important accessory role for DRibbles-induced B cell immune function.


Subject(s)
Autophagy/immunology , B-Lymphocytes/immunology , Macrophages/immunology , Myeloid Differentiation Factor 88/immunology , Phagosomes/immunology , Toll-Like Receptor 4/immunology , Animals , Antigen Presentation/immunology , Bone Marrow Cells/immunology , CD40 Antigens/immunology , CD40 Ligand/immunology , Coculture Techniques , Cytokines/biosynthesis , Cytokines/metabolism , Lymphocyte Activation , Macrophage Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Spleen/cytology , T-Lymphocytes/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...