Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(4): e0414223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421191

ABSTRACT

In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.


Subject(s)
Antiprotozoal Agents , Artemisinins , Biological Products , Malaria , Toxoplasma , Toxoplasmosis , Humans , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Artemisinins/pharmacology
2.
Mol Microbiol ; 121(5): 927-939, 2024 May.
Article in English | MEDLINE | ID: mdl-38396382

ABSTRACT

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/metabolism , Aflatoxins/genetics , Genome, Fungal/genetics , Recombination, Genetic , Genomics , Metabolomics , Genotype , Phenotype , Multigene Family , Genetic Variation , Indoles/metabolism , Meiosis/genetics
3.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37995692

ABSTRACT

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Peptaibols/metabolism , Peptaibols/pharmacology , Antimalarials/pharmacology , Membrane Transport Proteins , Cell Membrane Permeability
4.
J Nat Prod ; 86(8): 1980-1993, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37523665

ABSTRACT

Fungi pose a persistent threat to humankind with worrying indications that emerging and re-emerging pathogens (e.g., Candida auris, Coccidioides spp., drug-resistant Aspergilli, and more) exhibit resistance to the limited number of approved antifungals. To address this problem, our team is exploring endophytic fungi as a resource for the discovery of new antifungal natural products. The rationale behind this decision is based on evidence that endophytes engage with plants in mutualistic relationships wherein some fungi actively participate by producing chemical defense measures that suppress pathogenic microorganisms. To improve the odds of bioactive metabolite discovery, we developed a new hands-free laser-cutting system capable of generating >50 plant samples per minute that, in turn, enabled our team to prepare and screen large numbers of endophytic fungi. One of the fungal isolates obtained in this way was identified as an Elsinoë sp. that produced a unique aureobasidin analogue, persephacin (1). Some distinctive features of 1 are the absence of both phenylalanine residues combined with the incorporation of a novel amino acid residue, persephanine (9). Compound 1 exhibits potent antifungal effects against a large number of pathogenic yeast (including several clinical C. auris strains), as well as phylogenetically diverse filamentous fungi (e.g., Aspergillus fumigatus). In an ex vivo eye infection model, compound 1 outperformed standard-of-care treatments demonstrating the ability to suppress fluconazole-resistant Candida albicans and A. fumigatus at a concentration (0.1% solution) well below the clinically recommended levels used for fluconazole and natamycin (2% and 5% solutions, respectively). In 3D tissue models for acute dermal and ocular safety, 1 was found to be nontoxic and nonirritating at concentrations required to elicit antifungal activity. Natural product 1 appears to be a promising candidate for further investigation as a broad-spectrum antifungal capable of controlling a range of pathogens that negatively impact human, animal, and plant health.


Subject(s)
Antifungal Agents , Fluconazole , Animals , Humans , Antifungal Agents/pharmacology , Fluconazole/pharmacology , Aspergillus fumigatus , Microbial Sensitivity Tests , Candida albicans
5.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37276438

ABSTRACT

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Subject(s)
Anti-Infective Agents , Cryptosporidiosis , Cryptosporidium , Mitosporic Fungi , Humans , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Structure
6.
J Org Chem ; 88(13): 9167-9186, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37343240

ABSTRACT

Fusapyrones are fungal metabolites, which have been reported to have broad-spectrum antibacterial and antifungal properties. Despite the first members of this chemical class being described three decades prior, many aspects of their structures have remained unresolved, thereby constraining efforts to fully understand structure-activity relationships within this metabolite family and impeding the design of streamlined syntheses. Among the main challenges posed by fusapyrones is the incorporation of several single and groups of stereocenters separated by atoms with freely rotating bonds, which have proven unyielding to spectroscopic analyses. In this study, we obtained a series of new (2-5 and 7-9) and previously reported fusapyrones (1 and 6), which were subjected to a combination of spectroscopic, chemical, and computational techniques enabling us to offer proposals for their full structures, as well as provide a pathway to reinterpreting the absolute configurations of other published fusapyrone metabolites. Biological testing of the fusapyrones revealed their abilities to inhibit and disrupt biofilms made by the human fungal pathogen, Candida albicans. These results show that fusapyrones reduce hyphae formation in C. albicans, as well as decrease the surface adherence capabilities of planktonic cells and cells transitioning into early-stage biofilm formation.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Pyrones/pharmacology , Biofilms
7.
Microbiol Spectr ; 11(3): e0064723, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039683

ABSTRACT

There is an unmet need for effective therapies for treating diseases associated with the intestinal parasite Giardia lamblia. In this study, a library of chemically validated purified natural products and fungal extracts was screened for chemical scaffolds that can inhibit the growth of G. lamblia. The phenotypic screen led to the identification of several previously unreported classes of natural product inhibitors that block the growth of G. lamblia. Hits from phenotypic screens of these naturally derived compounds are likely to possess a variety of mechanisms of action not associated with clinically used nitroimidazole and thiazolide compounds. They may therefore be effective against current drug-resistant parasite strains. IMPORTANCE There is a direct link between widespread prevalence of clinical giardiasis and poverty. This may be one of the reasons why giardiasis is a significant contributor to diarrheal morbidity, stunting, and death of children in resource-limited communities around the world. FDA-approved treatments for giardiasis include metronidazole, related nitroimidazole drugs, and albendazole. However, a substantial number of clinical infections are resistant to these treatments. The depth of the challenge is partly exacerbated by a lack of investment in the discovery and development of novel agents for treatment of giardiasis. Applicable interventions must include new drug development strategies that will result in the identification of effective therapeutics, particularly those that are inexpensive and can be quickly advanced to clinical uses, such as products from nature. This study identified novel chemical scaffolds from fungi that can form the basis of future medicinal chemistry optimization of novel antigiardial agents.


Subject(s)
Antiprotozoal Agents , Biological Products , Giardiasis , Child , Humans , Giardiasis/parasitology , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Metronidazole/therapeutic use , Fungi
8.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35696348

ABSTRACT

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Subject(s)
Antineoplastic Agents , Hypocreales , Amino Acids/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Hypocreales/chemistry , Peptaibols/pharmacology
9.
J Nat Prod ; 85(4): 1079-1088, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35416663

ABSTRACT

The pressing need for novel chemical matter to support bioactive compound discovery has led natural product researchers to explore a wide range of source organisms and environments. One of the implicit guiding principles behind those efforts is the notion that sampling different environments is critical to accessing unique natural products. This idea was tested by comparing fungi from disparate biomes: aquatic sediments from Lake Michigan (USA) and terrestrial samples taken from the surrounding soils. Matched sets of Penicillium brevicompactum, Penicillium expansum, and Penicillium oxalicum from the two source environments were compared, revealing modest differences in physiological performance and chemical output. Analysis of LC-MS/MS-derived molecular feature data showed no source-dependent differences in chemical richness. High levels of scaffold homogeneity were also observed with 78-83% of scaffolds shared among the terrestrial and aquatic Penicillium spp. isolates. A comparison of the culturable fungi from the two biomes indicated that certain genera were more strongly associated with aquatic sediments (e.g., Trichoderma, Pseudeurotium, Cladosporium, and Preussia) versus the surrounding terrestrial environment (e.g., Fusarium, Pseudogymnoascus, Humicola, and Acremonium). Taken together, these results suggest that focusing efforts on sampling the microbial resources that are unique to an environment may have a more pronounced effect on enhancing the sought-after natural product diversity needed for chemical discovery and screening collections.


Subject(s)
Ascomycota , Biological Products , Penicillium , Biodiversity , Biological Products/chemistry , Chromatography, Liquid , Fungi , Penicillium/chemistry , Tandem Mass Spectrometry
10.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284725

ABSTRACT

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

12.
mSystems ; 6(5): e0064421, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34698546

ABSTRACT

The success of natural product-based drug discovery is predicated on having chemical collections that offer broad coverage of metabolite diversity. We propose a simple set of tools combining genetic barcoding and metabolomics to help investigators build natural product libraries aimed at achieving predetermined levels of chemical coverage. It was found that such tools aided in identifying overlooked pockets of chemical diversity within taxa, which could be useful for refocusing collection strategies. We have used fungal isolates identified as Alternaria from a citizen-science-based soil collection to demonstrate the application of these tools for assessing and carrying out predictive measurements of chemical diversity in a natural product collection. Within Alternaria, different subclades were found to contain nonequivalent levels of chemical diversity. It was also determined that a surprisingly modest number of isolates (195 isolates) was sufficient to afford nearly 99% of Alternaria chemical features in the data set. However, this result must be considered in the context that 17.9% of chemical features appeared in single isolates, suggesting that fungi like Alternaria might be engaged in an ongoing process of actively exploring nature's metabolic landscape. Our results demonstrate that combining modest investments in securing internal transcribed spacer (ITS)-based sequence information (i.e., establishing gene-based clades) with data from liquid chromatography-mass spectrometry (i.e., generating feature accumulation curves) offers a useful route to obtaining actionable insights into chemical diversity coverage trends in a natural product library. It is anticipated that these outcomes could be used to improve opportunities for accessing bioactive molecules that serve as the cornerstone of natural product-based drug discovery. IMPORTANCE Natural product drug discovery efforts rely on libraries of organisms to provide access to diverse pools of compounds. Actionable strategies to rationally maximize chemical diversity, rather than relying on serendipity, can add value to such efforts. Readily implementable biological (i.e., ITS sequence analysis) and chemical (i.e., mass spectrometry-based feature and scaffold measurements) diversity assessment tools can be employed to monitor and adjust library development tactics in real time. In summary, metabolomics-driven technologies and simple gene-based specimen barcoding approaches have broad applicability to building chemically diverse natural product libraries.

13.
Sci Rep ; 11(1): 13597, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193920

ABSTRACT

Merkel cell carcinoma (MCC) is a rare, but aggressive skin cancer the incidence of which has increased significantly in recent years. The majority of MCCs have incorporated Merkel cell polyomavirus (VP-MCC) while the remainder are virus-negative (VN-MCC). Although a variety of therapeutic options have shown promise in treating MCC, there remains a need for additional therapeutics as well as probes for better understanding MCC. A high-throughput screening campaign was used to assess the ability of > 25,000 synthetic and natural product compounds as well as > 20,000 natural product extracts to affect growth and survival of VN-MCC and VP-MCC cell lines. Sixteen active compounds were identified that have mechanisms of action reported in the literature along with a number of compounds with unknown mechanisms. Screening results with pure compounds suggest a range of potential targets for MCC including DNA damage, inhibition of DNA or protein synthesis, reactive oxygen species, and proteasome inhibition as well as NFκB inhibition while also suggesting the importance of zinc and/or copper binding. Many of the active compounds, particularly some of the natural products, have multiple reported targets suggesting that this strategy might be a particularly fruitful approach. Processing of several active natural product extracts resulted in the identification of additional MCC-active compounds. Based on these results, further investigations focused on natural products sources, particularly of fungal origin, are expected to yield further potentially useful modulators of MCC.


Subject(s)
Antineoplastic Agents , Biological Products , Carcinoma, Merkel Cell , Skin Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
14.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208349

ABSTRACT

A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey's method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Merkel Cell/drug therapy , Hypocreales/chemistry , Peptaibols/chemistry , Peptaibols/pharmacology , Skin Neoplasms/drug therapy , Amino Acid Sequence , Antineoplastic Agents/chemistry , Carcinoma, Merkel Cell/chemistry , Carcinoma, Merkel Cell/metabolism , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Skin Neoplasms/chemistry , Skin Neoplasms/metabolism
15.
J Nat Prod ; 84(2): 503-517, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33565879

ABSTRACT

Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 µg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 µg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 µM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 µM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.


Subject(s)
Antimalarials/pharmacology , Hypocrea/chemistry , Peptaibols/biosynthesis , Trichoderma/chemistry , Biological Products/pharmacology , Drug Resistance , Hep G2 Cells , Humans , Molecular Structure , Pennsylvania , Peptaibols/pharmacology , Plasmodium falciparum/drug effects , Soil Microbiology , Texas
16.
Phytochemistry ; 173: 112278, 2020 May.
Article in English | MEDLINE | ID: mdl-32078832

ABSTRACT

Following the discovery of a new class of compounds that inhibit the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) protease in a prior study, further chemical investigation of the Dictyosporium digitatum fungus resulted in the identification of 16 additional metabolites, including 12 undescribed compounds (1-12). The constitution and relative configuration of these new molecules were established by comprehensive NMR and HRMS analyses. Their absolute configurations were determined by employing Mosher's ester analysis and TDDFT ECD calculations. Two sesquiterpenes, dictyosporins A (1) and B (2), possess an undescribed eudesmen-type of structural scaffold. The ability of the isolated compounds to inhibit MALT1 proteolytic activity was evaluated, but none of them exhibited significant inhibition.


Subject(s)
Ascomycota , Sesquiterpenes , Magnetic Resonance Spectroscopy , Molecular Structure , Soil
17.
J Nat Prod ; 82(4): 886-894, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30865445

ABSTRACT

A Rhizopus sp. culture containing an endosymbiont partner ( Burkholderia sp.) was obtained through a citizen-science-based soil-collection program. An extract prepared from the pair of organisms exhibited strong inhibition of Ewing sarcoma cells and was selected for bioassay-guided fractionation. This led to the purification of rhizoxin (1), a potent antimitotic agent that inhibited microtubule polymerization, along with several new (2-5) and known (6) analogues of 1. The structures of 2-6 were established using a combination of NMR data analysis, while the configurations of the new stereocenters were determined using ROESY spectroscopy and comparison of GIAO-derived and experimental data for NMR chemical shift and 3 JHH coupling values. Whereas compound 1 showed modest selectivity for Ewing sarcoma cell lines carrying the EWSR1/ FLI1 fusion gene, the other compounds were determined to be inactive. Chemically, compound 2 stands out from other rhizoxin analogues because it is the first member of this class that is reported to contain a one-carbon-smaller 15-membered macrolactone system. Through a combination of experimental and computational tests, we determined that 2 is likely formed via an acid-catalyzed Meinwald rearrangement from 1 because of the mild acidic culture environment created by the Rhizopus sp. isolate and its symbiont.


Subject(s)
Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrolides/chemistry , Macrolides/pharmacokinetics , Stress, Physiological , Burkholderia/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Rhizopus/chemistry , Sarcoma, Ewing/pathology , Structure-Activity Relationship , Symbiosis
18.
J Nat Prod ; 82(1): 154-162, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30600998

ABSTRACT

Bioassay-guided separation of an extract from a Dictyosporium sp. isolate led to the identification of six new compounds, 1-6, together with five known compounds, 7-11. The structures of the new compounds were primarily established by extensive 1D and 2D NMR experiments. The absolute configurations of compounds 3-6 were determined by comparison of their experimental electronic circular dichroism (ECD) spectra with DFT quantum mechanical calculated ECD spectra. Compounds 3-5 possess novel structural scaffolds, and biochemical studies revealed that oxepinochromenones 1 and 7 inhibited the activity of MALT1 protease.


Subject(s)
Enzyme Inhibitors/isolation & purification , Fungi/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...