Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 113: 377-82, 2012 Dec 30.
Article in English | MEDLINE | ID: mdl-23084273

ABSTRACT

This study explores the influence of the chemical composition (SiO(2), CaO, Fe(2)O(3), and Al(2)O(3)) of incinerator bottom ash on its friction angle. Direct shear tests were performed to measure the strength of bottom ash with two distinctly different compositions. Then, an empirical equation was regressed to determine the correlation between each composition and the friction angle. The experimental results showed that the main constituent material of the incinerator bottom ash from general municipal wastes is SiO(2), and the friction angle is 48.04°-52.66°. The bottom ash from incineration plants treating both municipal wastes and general industrial wastes has a high content of iron-aluminum oxides, and its friction angle is 44.60°-52.52°. According to the multivariate regression analysis result, the friction angle of bottom ash of any composition is influenced mainly by the Fe(2)O(3) and Al(2)O(3) contents. This study used the friction angle of the bottom ash from four different incineration plants to validate the empirical equation, and found that the error between actual friction angles and the predicted values was -1.36% to 5.34%. Therefore, the regressed empirical equation in this study can be employed in engineering applications to preliminarily identify the backfill quality of incinerator bottom ash.


Subject(s)
Coal Ash/analysis , Aluminum Oxide/analysis , Calcium Compounds/analysis , Ferric Compounds/analysis , Oxides/analysis , Silicon Dioxide/analysis
2.
Waste Manag ; 30(7): 1303-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20005693

ABSTRACT

The mechanical properties, including strength, deformational behavior, and wetting softening phenomena of municipal solid waste incinerator (MSWI) bottom ash are one of the major concerns for reuse applications. However, owing to the complex constituents of municipal solid waste, the properties of MSWI bottom ash are often highly variable. A series of artificial specimens with controlled chemical components were tested in this study. The test results show that the artificial bottom ash possesses the following mechanical characteristics: (1) for the strength, the frictional angles of the bottom ash under dry and saturated conditions vary from 34.8 degrees to 51.1 degrees and 26.0 degrees to 37.2 degrees, respectively; (2) for the deformation, the shear stiffness increases with the normal stress arises and degrades upon increased shearing; (3) significant wetting degradation of the strength and stiffness were observed. The multi-variable regression analysis was conducted to evaluate the associated influence of the chemical components on the strength. Among the evaluated components, Fe(2)O(3) and Al(2)O(3) are key factors; an increase in either results in higher strength at both dry and saturated conditions. The results were used to propose empirical relationships for phi(dry) and phi(sat), expressed in terms of Fe(2)O(3) and Al(2)O(3). Accordingly, a strength classification chart is proposed for engineering purposes.


Subject(s)
Incineration , Waste Products/analysis , Aluminum Oxide/analysis , Calcium Compounds/analysis , Cities , Ferric Compounds/analysis , Friction , Materials Testing , Oxides/analysis , Shear Strength , Silicon Dioxide/analysis , Stress, Mechanical , Waste Products/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL