Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38995222

ABSTRACT

The objective was to evaluate the effects of replacing inorganic trace minerals (ITM) with reduced levels of organic trace minerals (OTM) in proteinate forms and selenium yeast (Se-yeast) in the mineral premix of prepartal and lactating dairy goats on lactation performance, milk fatty acid (FA) composition, nutrient digestibility, and antioxidant status. Xinong Saanen dairy goats (n = 40) were blocked by parity and body weight, and randomly assigned to either ITM or OTM treatments from 4 wk prepartum to 8 mo of lactation. Both groups received the same basal diet except for the trace mineral supplement. The ITM supplement included Fe, Cu, Zn, and Mn as sulfates, and Se as selenite to meet the recommendations. The OTM supplement included Fe, Cu, Zn, and Mn as proteinates at 50% of ITM supplement levels, and Se as Se-yeast at 100% of ITM supplement level. Sampling and measurements were performed in the first, second, fourth, and eighth month of lactation. Data were summarized by month and treatment, and analyzed using the Mixed Model of SPSS with repeated measures. OTM group showed lower milk fat (P = 0.02) and higher milk Se (P = 0.03) with no compromised effects on milk yield and milk protein compared to ITM group. Furthermore, OTM decreased the content of C6:0, C8:0, and C10:0 (P < 0.05) and increased the content of odd- and branched-chain FAs in milk fat due to greater content of C15:0 (P = 0.01) and anteiso C15:0 (P = 0.07). OTM led to greater total tract digestibility of dry matter (P = 0.03), crude protein (P = 0.07), ether extract (P = 0.03), and acid detergent fiber (P = 0.05). OTM goats showed less fecal excretion of Fe (P = 0.01), Cu (P < 0.01), and Zn (P = 0.08) compared to ITM goats. There was a tendency for greater serum GSH-Px activity (P = 0.09) with OTM. Overall, the long-term substitution of reduced levels of OTM for ITM can change milk fat and FA composition while maintaining milk yield, digestibility, and antioxidant status.


Lipids play important roles in the physiochemical properties of milk and dairy products. For example, specific milk fatty acids (FAs), such as those with 8- and 10-carbon chains, influence the flavor of goat milk. Additionally, certain odd- and branched-chain (OBCFA) exhibit anticarcinogenic effects in vitro. Studies in dairy cows have demonstrated organic trace minerals (OTM) can enhance lactation performance, nutrient digestibility, and antioxidant status. In this study, substituting OTM for inorganic trace minerals (ITM) in the diet of dairy goats decreased milk fat without negatively impacting milk yield, nutrient digestibility, and serum antioxidant status. Feeding OTM reduced the content of C6:0, C8:0, and C10:0 FAs while increasing the content of OBCFA in milk fat. The data suggest that replacing ITM with reduced levels of OTM in proteinates and selenium yeast can alter milk FA composition without compromising milk yield, nutrient digestibility, and antioxidant status in dairy goats.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Fatty Acids , Goats , Lactation , Milk , Selenium , Trace Elements , Animals , Goats/physiology , Female , Lactation/drug effects , Lactation/physiology , Milk/chemistry , Animal Feed/analysis , Fatty Acids/metabolism , Diet/veterinary , Trace Elements/administration & dosage , Trace Elements/metabolism , Selenium/pharmacology , Selenium/administration & dosage , Antioxidants/metabolism , Dietary Supplements/analysis , Digestion/drug effects , Random Allocation
2.
Front Nutr ; 8: 722303, 2021.
Article in English | MEDLINE | ID: mdl-34552955

ABSTRACT

This study aimed to investigate the biological effects of supplementation of bovine lactoferricin (BLFc) at the rate of 100 mg/kg/day (LF-1) or 200 mg/kg/day (LF-2) in lactating dairy goats. Dietary BLFc supplementation increased the concentration of lactoferrin (LF) in the milk and serum (p < 0.05) without affecting the feed intake. In the LF-1 group, serum Fe, total antioxidant (T-AOC), and immunoglobulin A (IgA) were increased (p < 0.05), while malondialdehyde (MDA) was decreased (p < 0.05). In the LF-2 group, ruminal fluid pH value was decreased (p < 0.05), and the composition of ruminal microflora on day 42 was more diversified. Firmicutes phylum in the LF-2 group was the most abundant phyla. In contrast, Bacteroidetes phylum in the control group and the LF-1 group were the most abundant. Lower milk somatic cell count and higher IgA were observed in the LF-1 group and the LF-2 group than those in the control group (p < 0.05). These results suggested beneficial effects of supplementation of 100 mg/kg/day BLFc on reducing the oxidative stress and altering diversity of ruminal microflora.

SELECTION OF CITATIONS
SEARCH DETAIL