Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Crit Care ; 30(1): 61-68, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085880

ABSTRACT

PURPOSE OF REVIEW: With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS: PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY: Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.


Subject(s)
Diaphragm , Positive-Pressure Respiration , Humans , Lung , Respiration , Respiration, Artificial/methods
2.
Intensive Care Med Exp ; 11(1): 73, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891413

ABSTRACT

There is a need to monitor tidal volume in critically ill patients with acute respiratory failure, given its relation with adverse clinical outcome. However, quantification of tidal volume in non-intubated patients is challenging. In this proof-of-concept study, we evaluated whether ultrasound measurements of diaphragm excursion could be a valid surrogate for tidal volume in patients with respiratory failure. Diaphragm excursions and tidal volumes were simultaneously measured in invasively ventilated patients (N = 21) and healthy volunteers (N = 20). Linear mixed models were used to estimate the ratio between tidal volume and diaphragm excursion. The tidal volume-diaphragm excursion ratio was 201 mL/cm in ICU patients [95% confidence interval (CI) 161-240 mL/cm], and 361 (294-428) mL/cm in healthy volunteers. An excellent association was shown within participants (R2 = 0.96 in ICU patients, R2 = 0.90 in healthy volunteers). However, the differences between observed tidal volume and tidal volume as predicted by the linear mixed models were considerable: the 95% limits of agreement in Bland-Altman plots were ± 91 mL in ICU patients and ± 396 mL in healthy volunteers. Likewise, the variability in tidal volume estimation between participants was large. This study shows that diaphragm excursions measured with ultrasound correlate with tidal volume, yet quantification of absolute tidal volume from diaphragm excursion is unreliable.

4.
Ultrasound Med Biol ; 48(9): 1833-1839, 2022 09.
Article in English | MEDLINE | ID: mdl-35691733

ABSTRACT

Ultrasonography of the diaphragm in the zone of apposition has become increasingly popular to evaluate muscle thickness and thickening fraction. However, measurements in this anatomical location are frequently hindered by factors that constrain physical accessibility or that alter diaphragm position. Therefore, other anatomical positions at the chest wall for transducer placement are used, but the variability in diaphragm thickness across the dome has not been systematically studied. The aim of this study was to evaluate anatomical variation of diaphragm thickness in 46 healthy volunteers on three ventrodorsal lines and two craniocaudal positions on these three lines. The intraclass correlation coefficient (ICC) for diaphragm thickness in the craniocaudal direction on the mid-axillary line was significantly higher than those on the posterior axillary and midclavicular lines, suggesting it had the lowest variability (ICCmidaxillary = .89, 95% confidence interval [CI]: 0.83-0.93, ICCposterior axillary = 0.74, 95% CI: 0.62-0.85, ICCmidclavicular = 0.62, 95% CI: 0.43-0.47, p < 0.05). Average diaphragm thickness was comparable on the posterior axillary and midaxillary lines and substantially larger on the midclavicular line (1.24 mm [1.06-1.47], 1.27 mm [1.10-1.42] and 2.32 [1.97-2.70], p < 0.01). We conclude that the normal diaphragm has a large variability in thickness, especially in the ventrodorsal direction. Variability in craniocaudal position is the lowest at the midaxillary line, which therefore appears to be the preferred site for diaphragm thickness measurement.


Subject(s)
Diaphragm , Thorax , Diaphragm/diagnostic imaging , Diaphragm/physiology , Healthy Volunteers , Humans , Ultrasonography
5.
J Appl Physiol (1985) ; 131(4): 1328-1339, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34473571

ABSTRACT

Positive end-expiratory pressure (PEEP) is routinely applied in mechanically ventilated patients to improve gas exchange and respiratory mechanics by increasing end-expiratory lung volume (EELV). In a recent experimental study in rats, we demonstrated that prolonged application of PEEP causes diaphragm remodeling, especially longitudinal muscle fiber atrophy. This is of potential clinical importance, as the acute withdrawal of PEEP during ventilator weaning decreases EELV and thereby stretches the adapted, longitudinally atrophied diaphragm fibers to excessive sarcomere lengths, having a detrimental effect on force generation. Whether this series of events occurs in the human diaphragm is unknown. In the current study, we investigated if short-term application of PEEP affects diaphragm geometry and function, which are prerequisites for the development of longitudinal atrophy with prolonged PEEP application. Nineteen healthy volunteers were noninvasively ventilated with PEEP levels of 2, 5, 10, and 15 cmH2O. Magnetic resonance imaging was performed to investigate PEEP-induced changes in diaphragm geometry. Subjects were instrumented with nasogastric catheters to measure diaphragm neuromechanical efficiency (i.e., diaphragm pressure normalized to its electrical activity) during tidal breathing with different PEEP levels. We found that increasing PEEP from 2 to 15 cmH2O resulted in a caudal diaphragm displacement (19 [14-26] mm, P < 0.001), muscle shortening in the zones of apposition (20.6% anterior and 32.7% posterior, P < 0.001), increase in diaphragm thickness (36.4% [0.9%-44.1%], P < 0.001) and reduction in neuromechanical efficiency (48% [37.6%-56.6%], P < 0.001). These findings demonstrate that conditions required to develop longitudinal atrophy in the human diaphragm are present with the application of PEEP.NEW & NOTEWORTHY We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus, prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU).


Subject(s)
Diaphragm , Respiration, Artificial , Animals , Humans , Lung Volume Measurements , Positive-Pressure Respiration , Rats , Respiration , Respiration, Artificial/adverse effects
6.
Sci Rep ; 10(1): 15346, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948813

ABSTRACT

Craniosynostosis is a condition in which cranial sutures fuse prematurely, causing problems in normal brain and skull growth in infants. To limit the extent of cosmetic and functional problems, swift diagnosis is needed. The goal of this study is to investigate if a deep learning algorithm is capable of correctly classifying the head shape of infants as either healthy controls, or as one of the following three craniosynostosis subtypes; scaphocephaly, trigonocephaly or anterior plagiocephaly. In order to acquire cranial shape data, 3D stereophotographs were made during routine pre-operative appointments of scaphocephaly (n = 76), trigonocephaly (n = 40) and anterior plagiocephaly (n = 27) patients. 3D Stereophotographs of healthy infants (n = 53) were made between the age of 3-6 months. The cranial shape data was sampled and a deep learning network was used to classify the cranial shape data as either: healthy control, scaphocephaly patient, trigonocephaly patient or anterior plagiocephaly patient. For the training and testing of the deep learning network, a stratified tenfold cross validation was used. During testing 195 out of 196 3D stereophotographs (99.5%) were correctly classified. This study shows that trained deep learning algorithms, based on 3D stereophotographs, can discriminate between craniosynostosis subtypes and healthy controls with high accuracy.


Subject(s)
Craniosynostoses/diagnostic imaging , Deep Learning , Imaging, Three-Dimensional/methods , Case-Control Studies , Facial Bones/diagnostic imaging , Head/abnormalities , Head/anatomy & histology , Humans , Infant , Photogrammetry
SELECTION OF CITATIONS
SEARCH DETAIL
...