Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(22): 14532-14545, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38760006

ABSTRACT

Single-wall carbon nanotubes (SWCNTs) have extraordinary electronic and optical properties that depend strongly on their exact chiral structure and their interaction with their inner and outer environment. The fluorescence (PL) of semiconducting SWCNTs, for instance, will shift depending on the molecules with which the SWCNT's hollow core is filled. These interaction-induced shifts are challenging to resolve on the ensemble level in samples containing a mixture of different filling contents due to the relatively large inhomogeneous line width of the ensemble SWCNT PL compared to the size of these shifts. To circumvent this inhomogeneous broadening, single-tube spectroscopy and hyperspectral imaging are often applied, which until now required time-consuming statistical studies. Here, we present hyperspectral PL microscopy combined with automated SWCNT segmenting based on either principal component analysis or a convolutional neural network, capable of both spatially and spectrally resolving the PL along the length of many individual SWCNTs at the same time and automatically fitting peak positions and line widths of individual SWCNTs. The methodology is demonstrated by accurately determining the emission shifts and line widths of thousands of left- and right-handed empty and water-filled SWCNTs coated with a chiral surfactant, resulting in four statistical distributions which cannot be resolved in ensemble spectroscopy of unsorted samples. The results demonstrate a robust method to quickly probe ensemble properties with single-enantiomer spectral resolution. Moreover, it promises to be an absolute quantitative method to characterize the relative abundances of SWCNTs with different handedness or filling content in macroscopic samples, simply by counting individual species.

2.
ACS Nano ; 18(14): 9917-9928, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38548470

ABSTRACT

Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.

3.
Nanoscale Horiz ; 9(2): 278-284, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38044846

ABSTRACT

High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.

4.
ACS Nano ; 17(3): 2190-2204, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36669768

ABSTRACT

The excitonic structure of single-wall carbon nanotubes (SWCNTs) is chirality dependent and consists of multiple singlet and triplet excitons (TEs) of which only one singlet exciton (SE) is optically bright. In particular, the dark TEs have a large impact on the integration of SWCNTs in optoelectronic devices, where excitons are created electrically, such as in infrared light-emitting diodes, thereby strongly limiting their quantum efficiency. Here, we report the characterization of TEs in chirality-purified samples of (6,5) and (7,5) SWCNTs, either randomly oriented in a frozen solution or with in-plane preferential orientation in a film, by means of optically detected magnetic resonance (ODMR) spectroscopy. In both chiral structures, the nanotubes are shown to sustain three types of TEs. One TE exhibits axial symmetry with zero-field splitting (ZFS) parameters depending on SWCNT diameter, in good agreement with the tighter confinement expected in narrower-diameter nanotubes. The ZFS of this TE also depends on nanotube environment, pointing to slightly weaker confinement for surfactant-coated than for polymer-wrapped SWCNTs. A second TE type, with much smaller ZFS, does not show the same systematic trends with diameter and environment and has a less well-defined axial symmetry. This most likely corresponds to TEs trapped at defect sites at low temperature, as exemplified by comparing SWCNT samples from different origins and after different treatments. A third triplet has unresolved ZFS, implying it originates from weakly interacting spin pairs. Aside from the diameter dependence, ODMR thus provides insights in both the symmetry, confinement, and nature of TEs on semiconducting SWCNTs.

5.
Nanoscale ; 14(41): 15484-15497, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36226764

ABSTRACT

Being some of the most efficient agents to individually solubilize single-wall carbon nanotubes (SWCNTs), bile salt surfactants (BSS) represent the foundation for the surfactant-based structure sorting and spectroscopic characterization of SWCNTs. In this work, we investigate three BSS in their ability to separate different SWCNT chiral structures by aqueous two-phase extraction (ATPE): sodium deoxycholate (DOC), sodium cholate (SC) and sodium chenodeoxycholate (CDOC). The small difference in their chemical structure (just one hydroxyl group) leads to significant differences in their stacking behavior on SWCNT walls with different diameter and chiral structure that, in turn, has direct consequences for the chiral sorting of SWCNTs using these BSS. By performing several series of systematic ATPE experiments, we reveal that, in general, the stacking of DOC and CDOC is more enantioselective than the stacking of SC on the SWCNT walls, while SC has a clear diameter preference for efficiently solubilizing the SWCNTs in comparison to DOC and CDOC. Moreover, combining sodium dodecylsulfate with SC allows for resolving the ATPE sorting transitions of empty and water-filled SWCNTs for a number of SWCNT chiralities. We also show that addition of SC to combinations of DOC and sodium dodecylbenzenesulfonate can enhance separations of particular chiralities.

6.
ACS Nano ; 16(10): 16038-16053, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36167339

ABSTRACT

The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of well-purified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.

7.
Nanoscale ; 14(23): 8385-8397, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35635153

ABSTRACT

The filling of single-wall carbon nanotubes (SWCNTs) with dye molecules has become a novel path to add new functionalities through the mutual interaction of confined dyes and host SWCNTs. In particular cases, the encapsulated dye molecules form strongly interacting molecular arrays and these result in severely altered optical properties of the dye molecules. Here, we present the encapsulation of a squaraine dye inside semiconducting chirality-sorted SWCNTs with diameters ranging from ∼1.15 nm, in which the dye molecules can only be encapsulated in a single-file molecular arrangement, up to ∼1.5 nm, in which two or three molecular files can fit side-by-side. Through the chirality-selective observation of energy transfer from the dye molecules to the surrounding SWCNTs, we find that the absorption wavelength of the dye follows a peculiar SWCNT diameter dependence, originating from the specific stacking of the dye inside the host SWCNTs. Corroborated by a theoretical model, we find that for each SWCNT diameter, the dye molecules adopt a close packing geometry, resulting in tunable optical properties of the hybrid when selecting a specific SWCNT chirality.

8.
ACS Nano ; 15(2): 2301-2317, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33382594

ABSTRACT

Specific and tunable modification to the optical properties of single-wall carbon nanotubes (SWCNTs) is demonstrated through direct encapsulation into the nanotube interior of guest molecules with widely varying static dielectric constants. Filled through simple ingestion of the guest molecule, each SWCNT population is demonstrated to display a robust modification to absorbance, fluorescence, and Raman spectra. Over 30 distinct compounds, covering static dielectric constants from 1.8 to 109, are inserted in large diameter SWCNTs (d = 1.104-1.524 nm) and more than 10 compounds in small diameter SWCNTs (d = 0.747-1.153 nm), demonstrating that the general effect of filler dielectric on the nanotube optical properties is a monotonic energy reduction (red-shifting) of the optical transitions with increased magnitude of the dielectric constant. Systematic fitting of the two-dimensional fluorescence-excitation and Raman spectra additionally enables determination of the critical filling diameter for each molecule and distinguishing of overall trends from specific guest-host interactions. Comparisons to predictions from existing theory are presented, and specific guest molecule/SWCNT chirality combinations that disobey the general trend and theory are identified. A general increase of the fluorescence intensity and line narrowing is observed for low dielectric constants, with long linear alkane filled SWCNTs exhibiting emission intensities approaching those of empty SWCNTs. These results demonstrate an exploitable modulation in the optical properties of SWCNTs and provide a foundation for examining higher-order effects, such as due to nonbulk-like molecule stacking, in host-guest interactions in well-controlled nanopore size materials.

10.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31742998

ABSTRACT

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

11.
ACS Nano ; 12(7): 6881-6894, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29965726

ABSTRACT

The hollow cores and well-defined diameters of single-walled carbon nanotubes (SWCNTs) allow for creation of one-dimensional hybrid structures by encapsulation of various molecules. Absorption and near-infrared photoluminescence-excitation (PLE) spectroscopy reveal that the absorption spectrum of encapsulated 1,3-bis[4-(dimethylamino)phenyl]-squaraine dye molecules inside SWCNTs is modulated by the SWCNT diameter, as observed through excitation energy transfer (EET) from the encapsulated molecules to the SWCNTs, implying a strongly diameter-dependent stacking of the molecules inside the SWCNTs. Transient absorption spectroscopy, simultaneously probing the encapsulated dyes and the host SWCNTs, demonstrates this EET, which can be used as a route to diameter-dependent photosensitization, to be fast (sub-picosecond). A wide series of SWCNT samples is systematically characterized by absorption, PLE, and resonant Raman scattering (RRS), also identifying the critical diameter for squaraine filling. In addition, we find that SWCNT filling does not limit the selectivity of subsequent separation protocols (including polyfluorene polymers for isolating only semiconducting SWCNTs and aqueous two-phase separation for enrichment of specific SWCNT chiralities). The design of these functional hybrid systems, with tunable dye absorption, fast and efficient EET, and the ability to remove all metallic SWCNTs by subsequent separation, demonstrates potential for implementation in photoconversion devices.

12.
Chem Commun (Camb) ; 54(56): 7842-7845, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29947377

ABSTRACT

Three-stage pH-switchable organic second-order nonlinear optical (SO NLO) chromophores are synthesized and characterized by wavelength-dependent linear and nonlinear spectroscopy. The chromophores exhibit huge SO NLO responses in their "on" stages, and large switching contrasts between adjacent stages in both SO NLO response and fluorescence quantum yield, with moreover different "on/off" sequences for closely related compounds.

13.
Phys Rev Lett ; 118(2): 027402, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28128601

ABSTRACT

Molecules confined inside single-walled carbon nanotubes (SWCNTs) behave quite differently from their bulk analogues. In this Letter we present temperature-dependent (4.2 K up to room temperature) photoluminescence (PL) spectra of water-filled and empty single-chirality (6,5) SWCNTs. Superimposed on a linear temperature-dependent PL spectral shift of the empty SWCNTs, an additional stepwise PL spectral shift of the water-filled SWCNTs is observed at ∼150 K. With the empty SWCNTs serving as an ideal reference system, we assign this shift to temperature-induced changes occurring in the single-file chain of water molecules encapsulated in the tubes. Our molecular dynamics simulations further support the occurrence of a quasiphase transition of the orientational order of the water dipoles in the single-file chain.

14.
Nanoscale ; 7(47): 20015-24, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26565985

ABSTRACT

Density gradient ultracentrifugation (DGU) becomes increasingly important for the sorting of nanomaterials according to the particles' density, hence structure and dimensions, which determine their unique properties, but the further development of this separation technique is hindered by the limited precision with which the densities could be characterized. In this work, we determine these densities by position-dependent 2D wavelength-dependent IR fluorescence-excitation and resonant Raman spectroscopy measured directly in the density gradient after ultracentrifugation. We apply this method to study the diameter and chirality-dependent sorting of empty and water-filled single-walled carbon nanotubes coated with two different surfactants, sodium cholate (SC) and sodium deoxycholate (DOC). The results elucidate the long standing contradiction that SC would provide better diameter sorting, while DOC is the most efficient surfactant to solubilise the nanotubes. A more predictable separation is obtained for empty DOC-coated nanotubes since their density is found to vary very smoothly with diameter. The accurate and chirality-dependent densities furthermore provide information on the surfactant coating, which is also important for other separation techniques, and allow to determine the mass percentage of water encapsulated inside the nanotubes.

15.
Nat Nanotechnol ; 10(3): 248-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25643253

ABSTRACT

Asymmetric dye molecules have unusual optical and electronic properties. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p'-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response) inside single-walled carbon nanotubes (SWCNTs), an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (ß0 = 9,800 × 10(-30) e.s.u.), resulting from the coherent alignment of arrays of ∼70 DANS molecules.

16.
ACS Nano ; 6(3): 2649-55, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22314108

ABSTRACT

The influence of water filling on the photoluminescence (PL) properties of SWCNTs is studied by ensemble and single-molecule PL spectroscopy. Red-shifted PL and PL excitation spectra are observed upon water filling for 16 chiralities and can be used to unambiguously distinguish empty SWCNTs from filled ones. The effect of water filling on the optical transitions is well-reproduced by a continuum dielectric constant model previously developed to describe the influence of the nanotube outer environment. Empty nanotubes display narrower luminescence lines and lower inhomogeneous broadening, signatures of reduced extrinsic perturbations. The radial breathing mode phonon sideband is clearly observed in the PL spectrum of small diameter empty tubes, and a strong exciton-phonon coupling is measured for this vibration. Biexponential PL decays are observed for empty and water-filled tubes, and only the short-living component is influenced by the water filling. This may be attributed to a shortening of the radiative lifetime of the bright state by the inner dielectric environment.

17.
J Phys Chem Lett ; 3(16): 2248-52, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-26295778

ABSTRACT

A practical yet accurate dispersion model for the molecular first hyperpolarizability ß is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the ß dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the ß dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value ß0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on ß0.

19.
J Am Chem Soc ; 132(46): 16467-78, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21033705

ABSTRACT

The first hyperpolarizability (ß) dispersion curve is measured for the first time for an octupolar nonlinear optical (NLO) molecule (crystal violet, CV) and modeled theoretically, yielding an in-depth understanding of the electronic structure and vibronic and solvation effects on such octupolar conjugated systems. Tunable wavelength hyper-Rayleigh scattering (HRS) measurements were performed on this prototypical octupolar molecule in the broad fundamental wavelength range of 620-1580 nm, showing significant shortcomings of the commonly used ß dispersion models. Three well-separated ß resonances involving the lowest-energy state and several higher excited states are clearly observed, including a significant contribution from a nominally one-photon forbidden transition. The experimental results for second-harmonic wavelengths above 330 nm are successfully modeled by means of a vibronically coupled essential-state description for octupolar chromophores, developed by Terenziani et al. (J. Phys. Chem. B 2008, 112, 5079), which takes into account polar solvation effects. The relative intensities of the various resonances, including the one below 330 nm, are also quantified by quantum chemical calculations. Furthermore, interesting effects of inhomogeneous broadening due to polar solvation of the two-dimensional chromophore are recognized in both linear and nonlinear spectra, allowing us to quantitatively address the long-standing problem of the band shape of the linear absorption spectrum of CV. This clearly demonstrates that extensive wavelength-dependent HRS measurements, as presented in this work, are essential to the characterization and design of NLO materials and represent a powerful tool to gain valuable information on molecular excitations and environmental effects in general.

20.
ACS Nano ; 4(11): 6717-24, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-20958073

ABSTRACT

A simple and quantitative, self-calibrating spectroscopic technique for the determination of the ratio of metallic to semiconducting single-wall carbon nanotubes (SWCNTs) in a bulk sample is presented. The technique is based on the measurement of the electron paramagnetic resonance (EPR) spectrum of the SWCNT sample to which cobalt(II)octaethylporphyrin (CoOEP) probe molecules have been added. This yields signals from both CoOEP molecules on metallic and on semiconducting tubes, which are easily distinguished and accurately characterized in this work. By applying this technique to a variety of SWCNT samples produced by different synthesis methods, it is shown that these signals for metallic and semiconducting tubes are independent of other factors such as tube length, defect density, and diameter, allowing the intensities of both signals for arbitrary samples to be retrieved by a straightforward least-squares regression. The technique is self-calibrating in that the EPR intensity can be directly related to the number of spins (number of CoOEP probe molecules), and as the adsorption of the CoOEP molecules is itself found to be unbiased toward metallic or semiconducting tubes, the measured intensities can be directly related to the mass percentage of metallic and semiconducting tubes in the bulk SWCNT sample. With the use of this method it was found that for some samples the metallic/semiconducting ratios strongly differed from the usual 1:2 ratio.


Subject(s)
Cobalt/chemistry , Electron Spin Resonance Spectroscopy/methods , Metalloporphyrins/chemistry , Nanotubes, Carbon/chemistry , Semiconductors , Absorption , Optical Phenomena , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...