Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J AOAC Int ; 106(3): 678-689, 2023 May 03.
Article in English | MEDLINE | ID: mdl-36222550

ABSTRACT

BACKGROUND: The AquaCHROM™ ECC method from CHROMagar is intended for the detection and enumeration of Escherichia coli and coliform bacteria in 100 mL water samples after 18-24 h of incubation at 35-37°C. OBJECTIVE: To validate the AquaCHROM ECC method for qualitative and quantitative detection of E. coli and coliforms with different water matrixes. METHODS: Inclusivity/exclusivity studies were conducted. AquaCHROM ECC was compared to U.S. cultural reference methods in unpaired matrix studies for detection of E. coli and coliforms in tap water, well water, lake water, and bottled water, and for enumeration in tap water, well water, and lake water. Three production lots of AquaCHROM ECC were tested for product consistency and stability. Variations in incubation time and temperature were evaluated in robustness testing. RESULTS: Inclusivity/exclusivity results demonstrated expected performance with the exception of three strains of Salmonella enterica, two species of Shigella, and one strain of Aeromonas, which turned the media blue or yellow. Results from the matrix studies demonstrated that AquaCHROM ECC and the reference methods are not statistically different for detection of E. coli and coliforms and statistically equivalent for enumeration of E. coli and coliforms. The AquaCHROM ECC powder production was proven to be consistent with a 24-month shelf life. Variation in temperature did not affect the method performance. Shortening the incubation time is not recommended. CONCLUSION: AquaCHROM ECC is an effective method for the detection and enumeration of E. coli and coliforms for the water matrixes evaluated. HIGHLIGHTS: The AquaCHROM ECC method is a quick, one-step method for the recovery and enumeration of E. coli and coliforms in 100 mL water samples. It is a non-agar-based chromogenic medium which provides a clear result without the use of a UV lamp.


Subject(s)
Enterobacteriaceae , Escherichia coli , Water , Food Microbiology , Fresh Water
2.
Microbiome ; 10(1): 178, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273146

ABSTRACT

BACKGROUND: Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS: In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS: We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.


Subject(s)
Annelida , Microbial Consortia , Symbiosis , Animals , Bacteria/genetics , Phylogeny , Sulfates , Sulfur , Annelida/microbiology
3.
Proc Natl Acad Sci U S A ; 117(35): 21658-21666, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817434

ABSTRACT

Symbiosis with microbes is a ubiquitous phenomenon with a massive impact on all living organisms, shaping the world around us today. Theoretical and experimental studies show that vertical transmission of symbionts leads to the evolution of mutualistic traits, whereas horizontal transmission facilitates the emergence of parasitic features. However, these studies focused on phenotypic data, and we know little about underlying molecular changes at the genomic level. Here, we combined an experimental evolution approach with infection assays, genome resequencing, and global gene expression analysis to study the effect of transmission mode on an obligate intracellular bacterial symbiont. We show that a dramatic shift in the frequency of genetic variants, coupled with major changes in gene expression, allow the symbiont to alter its position in the parasitism-mutualism continuum depending on the mode of between-host transmission. We found that increased parasitism in horizontally transmitted chlamydiae residing in amoebae was a result of processes occurring at the infectious stage of the symbiont's developmental cycle. Specifically, genes involved in energy production required for extracellular survival and the type III secretion system-the symbiont's primary virulence mechanism-were significantly up-regulated. Our results identify the genomic and transcriptional dynamics sufficient to favor parasitic or mutualistic strategies.


Subject(s)
Chlamydia/genetics , Host Microbial Interactions/genetics , Symbiosis/genetics , Amoeba/metabolism , Amoeba/microbiology , Animals , Bacteria/genetics , Biological Evolution , Chlamydia/metabolism , Genome, Bacterial/genetics , Parasites/genetics , Virulence
4.
Microbiol Resour Announc ; 9(31)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32732238

ABSTRACT

Here, we present two high-quality, draft metagenome-assembled genomes of deltaproteobacterial OalgDelta3 endosymbionts from the gutless marine worm Olavius algarvensis Their 16S rRNA gene sequences share 98% identity with Delta3 endosymbionts of related host species Olavius ilvae (GenBank accession no. AJ620501) and Inanidrilus exumae (GenBank accession no. FM202060), for which no symbiont genomes are available.

5.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32299882

ABSTRACT

Here, we present high-quality metagenome-assembled genome sequences of two closely related deltaproteobacterial endosymbionts from the gutless marine worm Olavius algarvensis (Annelida). The first is an improved draft genome sequence of the previously described sulfate-reducing symbiont Delta1. The second is from a closely related, recently discovered symbiont of O. algarvensis.

6.
mBio ; 10(3)2019 05 14.
Article in English | MEDLINE | ID: mdl-31088922

ABSTRACT

Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.


Subject(s)
Acanthamoeba castellanii/microbiology , Chlamydiales/physiology , Legionella pneumophila/pathogenicity , Symbiosis , Acanthamoeba castellanii/physiology , Gene Expression , Humans , Virulence
7.
ISME J ; 12(7): 1729-1742, 2018 06.
Article in English | MEDLINE | ID: mdl-29476143

ABSTRACT

Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.


Subject(s)
Acidobacteria/metabolism , Sulfur/metabolism , Acidobacteria/genetics , Acidobacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oxidation-Reduction , Soil/chemistry , Soil Microbiology , Sulfates/metabolism , Sulfites/metabolism , Wetlands
8.
mSystems ; 2(3)2017.
Article in English | MEDLINE | ID: mdl-28593198

ABSTRACT

Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes. IMPORTANCE Chlamydiae are known as major bacterial pathogens of humans, causing the ancient disease trachoma, but they are also frequently found in the environment where they infect ubiquitous protists such as amoebae. All known chlamydiae require a eukaryotic host cell to thrive. Using the environmental chlamydia Protochlamydia amoebophila within its natural host, Acanthamoeba castellanii, we investigated gene expression dynamics in vivo and throughout the complete chlamydial developmental cycle for the first time. This allowed us to infer how a major virulence mechanism, the type III secretion system, is regulated and employed, and we show that the physiology of chlamydiae undergoes a complete shift regarding carbon metabolism and energy generation. This study provides comprehensive insights into the infection strategy of chlamydiae and reveals a unique adaptation to life within a eukaryotic host cell.

9.
Mol Ecol ; 25(13): 3203-23, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26826340

ABSTRACT

The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.


Subject(s)
Annelida/microbiology , Biological Evolution , Gammaproteobacteria/genetics , Nematoda/microbiology , Symbiosis , Animals , DNA, Bacterial/genetics , Genetic Markers , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Environ Microbiol ; 17(12): 5023-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26013766

ABSTRACT

The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Subject(s)
Bacteria/metabolism , Carbon Monoxide/metabolism , Geologic Sediments/microbiology , Hydrogen/metabolism , Oligochaeta/microbiology , Seawater/microbiology , Animals , Carbon Dioxide/metabolism , Energy Metabolism , Mediterranean Region , Oxidation-Reduction , Spectrometry, Mass, Secondary Ion , Sulfur Compounds/metabolism , Symbiosis
11.
Environ Microbiol ; 16(12): 3699-713, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25142549

ABSTRACT

Symbiotic bivalves at hydrothermal vents and cold seeps host chemosynthetic bacteria intracellularly in gill cells. In bivalves, the gills grow continuously throughout their lifetime by forming new filaments. We examined how newly developed gill tissues are colonized in bivalves with horizontal and vertical symbiont transmission (Bathymodiolus mussels versus a vesicoymid clam) using fluorescence in situ hybridization and transmission electron microscopy. Symbiont colonization was similar in mussels and clams and was independent of the transmission modes. Symbionts were absent in the growth zones of the gills, indicating that symbionts colonize newly formed gill filaments de novo after they are formed and that gill colonization is a continuous process throughout the host's lifetime. Symbiont abundance and distribution suggested that colonization is shaped by the developmental stage of host cells. Self-infection, in which new gill cells are colonized by symbionts from ontogenetically older gill tissues, may also play a role. In mussels, symbiont infection led to changes in gill cell structure similar to those described from other epithelial cells infected by intracellular pathogens, such as the loss of microvilli. A better understanding of the factors that affect symbiont colonization of bivalve gills could provide new insights into interactions between intracellular bacteria and epithelial tissues.


Subject(s)
Bacteria/growth & development , Bivalvia/microbiology , Gills/microbiology , Symbiosis , Animals , Bivalvia/growth & development , Bivalvia/metabolism , Bivalvia/ultrastructure , Gills/growth & development , Gills/metabolism , Gills/ultrastructure , In Situ Hybridization, Fluorescence , Microscopy, Electron, Transmission , Proliferating Cell Nuclear Antigen/analysis
12.
ISME J ; 7(6): 1244-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23389105

ABSTRACT

The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4-21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles ≥ 9 mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.


Subject(s)
Mytilidae/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Gills/microbiology , In Situ Hybridization, Fluorescence , Mytilidae/growth & development , Mytilidae/physiology , Seawater/microbiology , Symbiosis
13.
Biol Bull ; 223(1): 123-37, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22983038

ABSTRACT

Bathymodiolin mussels dominate hydrothermal vent and cold seep communities worldwide. Symbiotic associations with chemosynthetic sulfur- and methane-oxidizing bacteria that provide for their nutrition are the key to their ecological and evolutionary success. The current paradigm is that these symbioses evolved from two free-living ancestors, one methane-oxidizing and one sulfur-oxidizing bacterium. In contrast to previous studies, our phylogenetic analyses of the bathymodiolin symbionts show that both the sulfur and the methane oxidizers fall into multiple clades interspersed with free-living bacteria, many of which were discovered recently in metagenomes from marine oxygen minimum zones. We therefore hypothesize that symbioses between bathymodiolin mussels and free-living sulfur- and methane-oxidizing bacteria evolved multiple times in convergent evolution. Furthermore, by 16S rRNA sequencing and fluorescence in situ hybridization, we show that close relatives of the bathymodiolin symbionts occur on hosts belonging to different animal phyla: Raricirrus beryli, a terebellid polychaete from a whale-fall, and a poecilosclerid sponge from a cold seep. The host range within the bathymodiolin symbionts is therefore greater than previously recognized, confirming the remarkable flexibility of these symbiotic associations.


Subject(s)
Aquatic Organisms/microbiology , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Metabolic Networks and Pathways/genetics , Mytilidae/microbiology , Symbiosis , Adaptation, Biological , Animals , Aquatic Organisms/physiology , Biodiversity , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Evolution, Molecular , Methane/metabolism , Molecular Sequence Data , Mytilidae/physiology , Oceans and Seas , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism
14.
Proc Natl Acad Sci U S A ; 109(19): E1173-82, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22517752

ABSTRACT

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Oligochaeta/metabolism , Proteomics/methods , Symbiosis , Animals , Bacteria/growth & development , Carbon Cycle , Chromatography, High Pressure Liquid , Ecosystem , Electrophoresis, Polyacrylamide Gel , Energy Metabolism , Host-Pathogen Interactions , Hydrogen/metabolism , Mass Spectrometry , Metabolic Networks and Pathways , Metabolomics/methods , Oligochaeta/microbiology , Seawater
15.
Appl Environ Microbiol ; 77(4): 1231-42, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21169452

ABSTRACT

Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented "core" members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions.


Subject(s)
Bacteria/genetics , Hydrogensulfite Reductase/genetics , Metagenome/genetics , Soil Microbiology , Sulfur-Reducing Bacteria/genetics , Wetlands , Alkanesulfonates/metabolism , Bacteria/enzymology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Environment , Gene Library , Genetic Variation , Geologic Sediments , Germany , Hydrogensulfite Reductase/metabolism , Microarray Analysis , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Soil , Sulfates/metabolism , Sulfites/metabolism , Sulfur-Reducing Bacteria/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...