Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 37(8): 1577-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24504699

ABSTRACT

Ordinary heterotrophic organisms (OHO) of an activated sludge wastewater treatment system showed an atypical growth behaviour when they are inoculated to batch aerobic growth tests with a high substrate-loaded condition. For example, the OHO maximum specific growth rates on readily biodegradable substrates (µ H) increased with a high ratio of substrate concentration to OHO active biomass concentration (So/Xo), although they were assumed to be constant in a conventional microbial growth kinetic model with a single OHO population group. We, therefore, set a hypothesis in that the change of OHO maximum specific growth rates in the batch test condition is caused by turnover of fast-growing OHO population against slow-growing OHO population. And, a competitive microbial growth kinetic model of the fast- and slow-growing OHO population groups was developed and validated with model-data fitting analysis for the batch test results. The competitive microbial growth kinetic model of process selection, rather than that of kinetic selection, was capable of simulating microbial growth kinetics in high substrate-loaded dynamic systems (i.e., batch tests) and low substrate-loaded steady-state systems (i.e., continuously operated wastewater treatment systems), better than the conventional non-competitive growth kinetic model.


Subject(s)
Biomass , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL