Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1183959, 2023.
Article in English | MEDLINE | ID: mdl-37614559

ABSTRACT

Introduction: Chronic infections are a major clinical challenge in hard-to-heal wounds and implanted devices. Pseudomonas aeruginosa is a common causative pathogen that produces numerous virulence factors. Due to the increasing problem of antibiotic resistance, new alternative treatment strategies are needed. Quorum sensing (QS) is a bacterial communication system that regulates virulence and dampens inflammation, promoting bacterial survival. QS inhibition is a potent strategy to reduce bacterial virulence and alleviate the negative impact on host immune response. Aim: This study investigates how secreted factors from P. aeruginosa PAO1, cultured in the presence or absence of the QS inhibitor sodium salicylate (NaSa), influence host immune response. Material and methods: In vitro, THP-1 macrophages and neutrophil-like HL-60 cells were used. In vivo, discs of titanium were implanted in a subcutaneous rat model with local administration of P. aeruginosa culture supernatants. The host immune response to virulence factors contained in culture supernatants (+/-NaSa) was characterized through cell viability, migration, phagocytosis, gene expression, cytokine secretion, and histology. Results: In vitro, P. aeruginosa supernatants from NaSa-containing cultures significantly increased THP-1 phagocytosis and HL-60 cell migration compared with untreated supernatants (-NaSa). Stimulation with NaSa-treated supernatants in vivo resulted in: (i) significantly increased immune cell infiltration and cell attachment to titanium discs; (ii) increased gene expression of IL-8, IL-10, ARG1, and iNOS, and (iii) increased GRO-α protein secretion and decreased IL-1ß, IL-6, and IL-1α secretion, as compared with untreated supernatants. Conclusion: In conclusion, treating P. aeruginosa with NaSa reduces the production of virulence factors and modulates major immune events, such as promoting phagocytosis and cell migration, and decreasing the secretion of several pro-inflammatory cytokines.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Animals , Rats , Sodium Salicylate/pharmacology , Titanium , Biological Transport
2.
Front Microbiol ; 13: 931839, 2022.
Article in English | MEDLINE | ID: mdl-35992652

ABSTRACT

The widespread threat of antibiotic resistance requires new treatment options. Disrupting bacterial communication, quorum sensing (QS), has the potential to reduce pathogenesis by decreasing bacterial virulence. The aim of this study was to investigate the influence of sodium salicylate (NaSa) on Staphylococcus aureus QS, virulence production and biofilm formation. In S. aureus ATCC 25923 (agr III), with or without serum, NaSa (10 mM) downregulated the agr QS system and decreased the secretion levels of alpha-hemolysin, staphopain A and delta-hemolysin. Inhibition of agr expression caused a downregulation of delta-hemolysin, decreasing biofilm dispersal and increasing biofilm formation on polystyrene and titanium under static conditions. In contrast, NaSa did not increase biofilm biomass under flow but caused one log10 reduction in biofilm viability on polystyrene pegs, resulting in biofilms being twice as susceptible to rifampicin. A concentration-dependent effect of NaSa was further observed, where high concentrations (10 mM) decreased agr expression, while low concentrations (≤0.1 mM) increased agr expression. In S. aureus 8325-4 (agr I), a high concentration of NaSa (10 mM) decreased hla expression, and a low concentration of NaSa (≤1 mM) increased rnaIII and hla expression. The activity of NaSa on biofilm formation was dependent on agr type and material surface. Eight clinical strains isolated from prosthetic joint infection (PJI) or wound infection belonging to each of the four agr types were evaluated. The four PJI S. aureus strains did not change their biofilm phenotype with NaSa on the clinically relevant titanium surface. Half of the wound strains (agr III and IV) did not change the biofilm phenotype in the 3D collagen wound model. In addition, compared to the control, ATCC 25923 biofilms formed with 10 mM NaSa in the collagen model were more susceptible to silver. It is concluded that NaSa can inhibit QS in S. aureus, decreasing the levels of toxin production with certain modulation of biofilm formation. The effect on biofilm formation was dependent on the strain and material surface. It is suggested that the observed NaSa inhibition of bacterial communication is a potential alternative or adjuvant to traditional antibiotics.

3.
Int J Mol Sci ; 22(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494399

ABSTRACT

Hard-to-heal wounds are typically infected with biofilm-producing microorganisms, such as Pseudomonas aeruginosa, which strongly contribute to delayed healing. Due to the global challenge of antimicrobial resistance, alternative treatment strategies are needed. Here, we investigated whether inhibition of quorum sensing (QS) by sodium salicylate in different P. aeruginosa strains (QS-competent, QS-mutant, and chronic wound strains) influences biofilm formation and tolerance to silver. Biofilm formation was evaluated in simulated serum-containing wound fluid in the presence or absence of sodium salicylate (NaSa). Biofilms were established using a 3D collagen-based biofilm model, collagen coated glass, and the Calgary biofilm device. Furthermore, the susceptibility of 48-h-old biofilms formed by laboratory and clinical strains in the presence or absence of NaSa towards silver was evaluated by assessing cell viability. Biofilms formed in the presence of NaSa were more susceptible to silver and contained reduced levels of virulence factors associated with biofilm development than those formed in the absence of NaSa. Biofilm aggregates formed by the wild-type but not the QS mutant strain, were smaller and less heterogenous in size when grown in cultures with NaSa compared to control. These data suggest that NaSa, via a reduction of cell aggregation in biofilms, allows the antiseptic to become more readily available to cells.


Subject(s)
Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Silver/pharmacology , Sodium Salicylate/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Pseudomonas Infections/microbiology , Quorum Sensing/drug effects , Virulence Factors
4.
J Med Microbiol ; 69(5): 767-780, 2020 May.
Article in English | MEDLINE | ID: mdl-32320374

ABSTRACT

Introduction. An important factor for delayed healing of chronic wounds is the presence of bacteria. Quorum sensing (QS), a cell density-dependent signalling system, controls the production of many virulence factors and biofilm formation in Pseudomonas aeruginosa.Aim. Inhibition by sodium salicylate (NaSa) of QS-regulated virulence expression was evaluated in QS-characterized clinical wound isolates of P. aeruginosa, cultured in serum-containing medium.Methodology. Fourteen clinical P. aeruginosa strains from chronic wounds were evaluated for the production of QS signals and virulence factors. Inhibition of QS by NaSa in P. aeruginosa clinical strains, wild-type PAO1 and QS reporter strains was evaluated using in vitro assays for the production of biofilm, pyocyanin, siderophores, alkaline protease, elastase and stapholytic protease.Results. Six clinical strains secreted several QS-associated virulence factors and signal molecules and two were negative for all factors. Sub-inhibitory concentrations of NaSa downregulated the expression of the QS-related genes lasB, rhlA and pqsA and reduced the secretion of several virulence factors in PAO1 and clinical strains cultured in serum. Compared to serum-free media, the presence of serum increased the expression of QS genes and production of siderophores and pyocyanin but decreased biofilm formation.Conclusions. Pseudomonas aeruginosa from chronic wound infections showed different virulence properties. While very few strains showed no QS activity, approximately half were highly virulent and produced QS signals, suggesting that the targeting of QS is a viable and relevant strategy for infection control. NaSa showed activity as a QS-inhibitor by lowering the virulence phenotypes and QS signals at both transcriptional and extracellular levels.


Subject(s)
Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Quorum Sensing/drug effects , Sodium Salicylate/pharmacology , Chronic Disease , Humans , Pseudomonas aeruginosa/isolation & purification , Virulence/drug effects , Virulence Factors/genetics
5.
Cytokine ; 58(2): 274-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22374312

ABSTRACT

Amelogenins are enamel matrix proteins with a proven ability to restore tissues in patients with advanced periodontitis and chronic skin wounds. To explore the mechanisms of action of amelogenins in wound inflammation, the in vitro effect on the expression of selected cell mediators involved in inflammation and tissue repair from human monocyte-derived macrophages was studied. Macrophages were treated with amelogenins in serum-enriched medium with simultaneous lipopolysaccharide (LPS) stimulation, for 6, 24 and 72 h, and the conditioned culture medium was analysed for 28 different cytokines. Amelogenin treatment directed the LPS-induced release of both pro- and anti-inflammatory cytokines towards an alternatively activated macrophage phenotype. This change in activation was also demonstrated by the amelogenin-induced secretion of alternative macrophage activation-associated CC chemokine-1 (AMAC-1, also known as CCL18; p<0.001), a well-documented marker of alternative activation. Amelogenins were also shown significantly to increase the macrophage expression of vascular endothelial growth factor and, to a lesser but significant extent, insulin-like growth factor-1 after 24h of culture. The results of the present in vitro study show that monocyte-derived macrophages stimulated by inflammatory agonist LPS respond to the treatment with amelogenins by reducing the pro-inflammatory activity and increasing the expression of tissue repair mediators.


Subject(s)
Amelogenin/physiology , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Cells, Cultured , Culture Media, Conditioned , Humans , Macrophages/metabolism
6.
APMIS ; 118(2): 156-64, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20132180

ABSTRACT

There is growing evidence that bacteria play a crucial role in the persistence of chronic wounds. These bacteria are most probably present in polymer-embedded aggregates that represent the biofilm mode of growth. Much work has been carried out to study the development of biofilms in vitro, in particular in attachment to solid surfaces. The observations from the chronic wounds indicate that the bacteria are not attached to a solid surface. Consequently, a new in vitro model is required to investigate biofilms in more wound-like settings. This study describes such a novel in vitro model, with bacteria growing as biofilm aggregates in a collagen gel matrix with serum protein mimicking the wound bed of chronic wounds. The model was verified to comprise important hallmarks of biofilms such as the bacterial embedment in a matrix and increased antibiotic tolerance. Furthermore, we have verified the relevance of the model by comparing the organization of the bacteria in the model with the organization of the bacteria in a real chronic wound. We believe that we have developed an important new model for investigating bacterial biofilms in chronic wounds. This model may be used to study biofilm development in chronic wounds and to develop novel diagnostic tools as well as treatment strategies.


Subject(s)
Bacterial Infections/microbiology , Soft Tissue Infections/microbiology , Wound Infection/microbiology , Bacterial Infections/drug therapy , Biofilms , Collagen , Humans , Soft Tissue Infections/drug therapy , Wound Infection/drug therapy
7.
J Mater Sci Mater Med ; 21(3): 947-54, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20012165

ABSTRACT

Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100 and 1000 microg/ml increased binding of NHDF via several integrins, including alphavbeta3, alphavbeta5 and alpha5beta1. Further, both surface interaction and cellular uptake of amelogenin by NHDF was observed using scanning and transmission electron microscopy. Gene microarray studies showed >8-fold up or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix.


Subject(s)
Amelogenin/chemistry , Fibroblasts/metabolism , Integrins/metabolism , Phagocytosis , Skin/cytology , Cell Movement , Cell Proliferation , Cells, Cultured , Extracellular Matrix/metabolism , Gene Expression Regulation , Humans , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Models, Biological , Wound Healing
8.
Int J Low Extrem Wounds ; 6(2): 82-97, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17558006

ABSTRACT

Disappointing results with the use of exogenous recombinant growth factors in chronic wounds have redirected the focus to the extracellular matrix (ECM). Newer research has clearly changed our view on the role of the ECM in tissue repair and dismissed the dogma that the sole function of ECM is a passive physical support for cells. It is now clear that intact or fragmented ECM molecules are capable of transducing signals pivotal for cell processes in wound healing primarily via integrin interactions in concert with growth factor activation. In addition, our knowledge about ECM molecules in minute concentrations with biological activity, but devoid of significant structural influence, is increasing. This article reviews the multifaceted molecular roles of ECM in the normal wound-healing process and some molecular abnormalities in chronic wounds, and touches on potential therapies based on the developments of tissue biology.


Subject(s)
Epithelium/drug effects , Extracellular Matrix/drug effects , Granulation Tissue/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Wound Healing/drug effects , Animals , Chronic Disease , Epithelium/physiology , Extracellular Matrix/physiology , Fibroblasts/drug effects , Humans , Integrins/drug effects , Soft Tissue Injuries/drug therapy , Soft Tissue Injuries/physiopathology , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL