Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 12: 718163, 2021.
Article in English | MEDLINE | ID: mdl-34456754

ABSTRACT

Developmental plasticity can elicit phenotypic adjustments that help organisms cope with environmental change, but the relationship between developmental plasticity and plasticity in adult life (e.g., acclimation) remains unresolved. We sought to examine developmental plasticity and adult acclimation in response to hypoxia of aerobic capacity (V̇O2max) for thermogenesis in deer mice (Peromyscus maniculatus) native to high altitude. Deer mice were bred in captivity and exposed to normoxia or one of four hypoxia treatments (12 kPa O2) across life stages: adult hypoxia (6-8 weeks), post-natal hypoxia (birth to adulthood), life-long hypoxia (before conception to adulthood), and parental hypoxia (mice conceived and raised in normoxia, but parents previously exposed to hypoxia). Hypoxia during perinatal development increased V̇O2max by a much greater magnitude than adult hypoxia. The amplified effect of developmental hypoxia resulted from physiological plasticity that did not occur with adult hypoxia - namely, increases in lung ventilation and volume. Evolved characteristics of deer mice enabled developmental plasticity, because white-footed mice (P. leucopus; a congener restricted to low altitudes) could not raise pups in hypoxia. Parental hypoxia had no persistent effects on V̇O2max. Therefore, developmental plasticity can have much stronger phenotypic effects and can manifest from distinct physiological mechanisms from adult acclimation.

3.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R800-R811, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826424

ABSTRACT

Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6-8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.


Subject(s)
Hypertension, Pulmonary/physiopathology , Hypoxia/physiopathology , Oxygen Consumption/physiology , Oxygen/metabolism , Peromyscus/metabolism , Acclimatization/physiology , Animals , Hypertension, Pulmonary/metabolism , Lung/physiopathology , Mice , Perfusion , Peromyscus/physiology
4.
J Comp Physiol B ; 191(2): 385-396, 2021 03.
Article in English | MEDLINE | ID: mdl-33533958

ABSTRACT

Hypoxia at high altitudes can constrain the ability of endotherms to maintain sufficient rates of pulmonary O2 transport to support exercise and thermogenesis. Hypoxia can also impede lung development during early post-natal life in some mammals, and could thus accentuate constraints on O2 transport at high altitude. We examined how these challenges are overcome in deer mice (Peromyscus maniculatus) native to high altitude. Lung structure was examined in highland and lowland populations of deer mice and lowland populations of white-footed mice (P. leucopus; a congener restricted to low altitude) that were bred in captivity. Among mice that were born and raised to adulthood in normoxia, highland deer mice had higher alveolar surface density and more densely packed alveoli. The increased alveolar surface density in highlanders became fully apparent at juvenile life stages at post-natal day 30 (P30), after the early developmental period of intense alveolus formation before P21. Alveolar surface density was maintained in highlanders that were conceived, born, and raised in hypoxia (~ 12 kPa O2), suggesting that lung development was not impaired by post-natal hypoxia as it is in many other lowland mammals. However, developmental hypoxia increased lung volume and thus augmented total alveolar surface area from P14. Overall, our findings suggest that evolutionary adaptation and developmental plasticity lead to changes in lung morphology that should improve pulmonary O2 uptake in deer mice native to high altitude.


Subject(s)
Altitude , Peromyscus , Acclimatization , Animals , Hypoxia , Lung , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...