Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 7: 13029, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27701378

ABSTRACT

Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor-host nuclear or cell-cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders.


Subject(s)
Photoreceptor Cells, Vertebrate/transplantation , Retina/transplantation , Retinal Diseases/therapy , Animals , Female , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , NIH 3T3 Cells , RNA/metabolism , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Stem Cell Transplantation , Tissue Donors
3.
Nature ; 485(7396): 99-103, 2012 May 03.
Article in English | MEDLINE | ID: mdl-22522934

ABSTRACT

Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.


Subject(s)
Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/transplantation , Vision, Ocular/physiology , Animals , GTP-Binding Protein alpha Subunits/deficiency , GTP-Binding Protein alpha Subunits/genetics , Light , Maze Learning , Mice , Retinal Bipolar Cells/ultrastructure , Retinal Horizontal Cells/ultrastructure , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/radiation effects , Transducin/deficiency , Transducin/genetics , Vision, Ocular/radiation effects , Visual Cortex/physiology , Visual Cortex/radiation effects
4.
Cell Transplant ; 21(5): 871-87, 2012.
Article in English | MEDLINE | ID: mdl-22325046

ABSTRACT

Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.


Subject(s)
Photoreceptor Cells, Vertebrate/cytology , Retina/cytology , Animals , Cell Differentiation , Cell Survival , Ciliary Neurotrophic Factor/genetics , Ciliary Neurotrophic Factor/metabolism , Dependovirus/genetics , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Genetic Therapy , Genetic Vectors/genetics , Genetic Vectors/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate/transplantation , Retina/pathology , Retina/ultrastructure , Retinal Degeneration/pathology , Retinal Degeneration/therapy
5.
Stem Cells ; 29(9): 1391-404, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21774040

ABSTRACT

Retinal degenerative diseases are a major cause of untreatable blindness. Stem cell therapy to replace lost photoreceptors represents a feasible future treatment. We previously demonstrated that postmitotic photoreceptor precursors expressing an NrlGFP transgene integrate into the diseased retina and restore some light sensitivity. As genetic modification of precursor cells derived from stem cell cultures is not desirable for therapy, we have tested cell selection strategies using fluorochrome-conjugated antibodies recognizing cell surface antigens to sort photoreceptor precursors. Microarray analysis of postnatal NrlGFP-expressing precursors identified four candidate genes encoding cell surface antigens (Nt5e, Prom1, Podxl, and Cd24a). To test the feasibility of using donor cells isolated using cell surface markers for retinal therapy, cells selected from developing retinae by fluorescence-activated cell sorting based on Cd24a expression (using CD24 antibody) and/or Nt5e expression (using CD73 antibody) were transplanted into the wild-type or Crb1(rd8/rd8) or Prph2(rd2/rd2) mouse eye. The CD73/CD24-sorted cells migrated into the outer nuclear layer, acquired the morphology of mature photoreceptors and expressed outer segment markers. They showed an 18-fold higher integration efficiency than that of unsorted cells and 2.3-fold higher than cells sorted based on a single genetic marker, NrlGFP, expression. These proof-of-principle studies show that transplantation competent photoreceptor precursor cells can be efficiently isolated from a heterogeneous mix of cells using cell surface antigens without loss of viability for the purpose of retinal stem cell therapy. Refinement of the selection of donorphotoreceptor precursor cells can increase the number of integrated photoreceptor cells,which is a prerequisite for the restoration of sight.


Subject(s)
Antigens, Surface/biosynthesis , Retinal Rod Photoreceptor Cells/transplantation , Stem Cells/cytology , Animals , Cell Differentiation , Gene Expression Profiling , Immunohistochemistry , Mice , Mice, Transgenic , Retina/cytology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/immunology , Stem Cells/immunology
6.
Cell Transplant ; 19(4): 487-503, 2010.
Article in English | MEDLINE | ID: mdl-20089206

ABSTRACT

Diseases culminating in photoreceptor loss are a major cause of untreatable blindness. Transplantation of rod photoreceptors is feasible, provided donor cells are at an appropriate stage of development when transplanted. Nevertheless, the proportion of cells that integrate into the recipient outer nuclear layer (ONL) is low. The outer limiting membrane (OLM), formed by adherens junctions between Müller glia and photoreceptors, may impede transplanted cells from migrating into the recipient ONL. Adaptor proteins such as Crumbs homologue 1 (Crb1) and zona occludins (ZO-1) are essential for localization of the OLM adherens junctions. We investigated whether targeted disruption of these proteins enhances donor cell integration. Transplantation of rod precursors in wild-type mice achieved 949 +/- 141 integrated cells. By contrast, integration is significantly higher when rod precursors are transplanted into Crb1(rd8/rd8) mice, a model of retinitis pigmentosa and Lebers congenital amaurosis that lacks functional CRB1 protein and displays disruption of the OLM (7,819 +/- 1,297; maximum 15,721 cells). We next used small interfering (si)RNA to transiently reduce the expression of ZO-1 and generate a reversible disruption of the OLM. ZO-1 knockdown resulted in similar, significantly improved, integration of transplanted cells in wild-type mice (7,037 +/- 1,293; maximum 11,965 cells). Finally, as the OLM remains largely intact in many retinal disorders, we tested whether transient ZO-1 knockdown increased integration in a model of retinitis pigmentosa, the rho(-/-) mouse; donor cell integration was significantly increased from 313 +/- 58 cells without treatment to 919 +/- 198 cells after ZO-1 knockdown. This study shows that targeted disruption of OLM junctional proteins enhances integration in the wild-type and degenerating retina and may be a useful approach for developing photoreceptor transplantation strategies.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Phosphoproteins/antagonists & inhibitors , Retinal Rod Photoreceptor Cells/transplantation , Retinitis Pigmentosa/therapy , Stem Cell Transplantation , Animals , Cell Movement , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Retinitis Pigmentosa/metabolism , Zonula Occludens-1 Protein , rho-Associated Kinases/deficiency , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
7.
Prog Brain Res ; 175: 3-21, 2009.
Article in English | MEDLINE | ID: mdl-19660645

ABSTRACT

Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells from both adult and embryonic-derived stem cells and their potential for retinal cell transplantation. We also discuss the strategies used to overcome barriers present in the degenerate neural retina and improve retinal cell integration. Finally, we consider the future translation of retinal cell therapy as a therapeutic strategy to treat retinal degeneration.


Subject(s)
Photoreceptor Cells/transplantation , Retina/transplantation , Retinal Diseases/surgery , Stem Cell Transplantation/methods , Animals , Humans , Mice
8.
Exp Eye Res ; 86(4): 601-11, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18294631

ABSTRACT

Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor integration following transplantation into the subretinal space in the adult mouse. Reversible disruption of the OLM may provide a strategy for increasing cell integration in future therapeutic applications.


Subject(s)
2-Aminoadipic Acid/pharmacology , Retina/drug effects , Stem Cell Transplantation/methods , 2-Aminoadipic Acid/administration & dosage , Animals , Cell Survival , Dose-Response Relationship, Drug , Graft Survival , Injections , Membranes/drug effects , Membranes/ultrastructure , Mice , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate/transplantation , Retina/ultrastructure , Time Factors , Vitreous Body
SELECTION OF CITATIONS
SEARCH DETAIL
...