Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 597, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844472

ABSTRACT

Computationally screening chemical libraries to discover molecules with desired properties is a common technique used in early-stage drug discovery. Recent progress in the field now enables the efficient exploration of billions of molecules within days or hours, but this exploration remains confined within the boundaries of the accessible chemistry space. While the number of commercially available compounds grows rapidly, it remains a limited subset of all druglike small molecules that could be synthesized. Here, we present a workflow where chemical reactions typically developed in academia and unconventional in drug discovery are exploited to dramatically expand the chemistry space accessible to virtual screening. We use this process to generate a first version of the Pan-Canadian Chemical Library, a collection of nearly 150 billion diverse compounds that does not overlap with other ultra-large libraries such as Enamine REAL or SAVI and could be a resource of choice for protein targets where other libraries have failed to deliver bioactive molecules.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Small Molecule Libraries , Canada
2.
ACS Omega ; 9(20): 22213-22229, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799318

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infections for which effective treatment options remain limited. Herein, we employed a computational structure-based design strategy aimed at identifying potential targets for a new class of allosteric inhibitors. Our investigation led to the discovery of a previously undisclosed allosteric binding site within the RSV polymerase, the large (L) protein. This discovery was achieved through a combination of virtual screening and molecular dynamics simulations. Subsequently, we identified two inhibitors, 6a and 10b, which both exhibited promising antiviral activity in the low micromolar range. Resistance profiling revealed a distinctive pattern in how RSV evaded treatment with this class of inhibitors. This pattern strongly suggested that this class of small molecules was targeting a new binding site in the RSV L protein, aligning with the computational predictions made in our study. This study paves the way for the development of more potent inhibitors for combating RSV infections by targeting a new druggable pocket within the RdRp which does not overlap with previously known resistance sites.

3.
Biochim Biophys Acta Biomembr ; 1866(3): 184281, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218576

ABSTRACT

Solution NMR spectroscopy of large protein systems is hampered by rapid signal decay, so most multidimensional studies focus on long-lived 1H-13C magnetization in methyl groups and/or backbone amide 1H-15N magnetization in an otherwise perdeuterated environment. Herein we demonstrate that it is possible to biosynthetically incorporate additional 1H-12C groups that possess long-lived magnetization using cost-effective partially deuterated or unlabeled amino acid precursors added to Escherichia coli growth media. This approach is applied to the outer membrane enzyme PagP in membrane-mimetic dodecylphosphocholine micelles. We were able to obtain chemical shift assignments for a majority of side chain 1H positions in PagP using nuclear Overhauser enhancements (NOEs) to connect them to previously assigned backbone 1H-15N groups and newly assigned 1H-13C methyl groups. Side chain methyl-to-aromatic NOEs were particularly important for confirming that the amphipathic α-helix of PagP packs against its eight-stranded ß-barrel, as indicated by previous X-ray crystal structures. Interestingly, aromatic NOEs suggest that some aromatic residues in PagP that are buried in the membrane bilayer are highly mobile in the micellar environment, like Phe138 and Phe159. In contrast, Tyr87 in the middle of the bilayer is quite rigid, held in place by a hydrogen bonded network extending to the surface that resembles a classic catalytic triad: Tyr87-His67-Asp61. This hydrogen bonded arrangement of residues is not known to have any catalytic activity, but we postulate that its role is to immobilize Tyr87 to facilitate packing of the amphipathic α-helix against the ß-barrel.


Subject(s)
Amino Acids , Escherichia coli Proteins , Amino Acids/metabolism , Escherichia coli Proteins/chemistry , Magnetic Resonance Spectroscopy , Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/chemistry , Hydrogen , Acyltransferases/chemistry
4.
Heliyon ; 9(11): e21408, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027705

ABSTRACT

In the past decade, there has been increasing interest in use of small molecules for immunomodulation. The affinity-based pull-down purification is an essential tool for target identification of small molecules and drug discovery. This study presents our recent efforts to investigate the cellular target(s) of Compound A, a small molecule with demonstrated immunomodulatory properties in human peripheral blood mononuclear cells (PBMCs). While we have previously observed the immunomodulatory activity of Compound A in PBMCs, the specific molecular targets underlying its effects remains elusive. To address this challenge, we synthesized a trifluoromethyl phenyl diazirine (TPD)-bearing trifunctional Probe 1 based on the chemical structure of Compound A, which could be used in a pull-down assay to efficiently bind to putative cellular targets via photoaffinity labelling. In this report, we utilized bovine serum albumin (BSA) as a model protein to establish a proof-of-concept in order to assess the suitability of Probe 1 for binding to an endogenous target. By the successful synthesis of Probe 1 and demonstrating the efficient binding of Probe 1 to BSA, we propose that this method can be used as a tool for further identification of potential protein targets of small molecules in living cells. Our findings provide a valuable starting point for further investigations into the molecular mechanisms underlying the immunomodulatory effects of Compound A.

5.
J Magn Reson ; 353: 107499, 2023 08.
Article in English | MEDLINE | ID: mdl-37307676

ABSTRACT

Solution NMR studies of large proteins are hampered by rapid signal decay due to short-range dipolar 1H-1H and 1H-13C interactions. These are attenuated by rapid rotation in methyl groups and by deuteration (2H), so selective 1H,13C-isotope labelling of methyl groups in otherwise perdeuterated proteins, combined with methyl transverse relaxation optimized spectroscopy (methyl-TROSY), is now standard for solution NMR of large protein systems > 25 kDa. For non-methyl positions, long-lived magnetization can be introduced as isolated 1H-12C groups. We have developed a cost-effective chemical synthesis for producing selectively deuterated phenylpyruvate and hydroxyphenylpyruvate. Feeding these amino acid precursors to E. coli in D2O, along with selectively deuterated anthranilate and unlabeled histidine, results in isolated and long-lived 1H magnetization in the aromatic rings of Phe (HD, HZ), Tyr (HD), Trp (HH2, HE3) and His (HD2 and HE1). We are additionally able to obtain stereoselective deuteration of Asp, Asn, and Lys amino acid residues using unlabeled glucose and fumarate as carbon sources and oxalate and malonate as metabolic inhibitors. Combining these approaches produces isolated 1H-12C groups in Phe, Tyr, Trp, His, Asp, Asn, and Lys in a perdeuterated background, which is compatible with standard 1H-13C labeling of methyl groups in Ala, Ile, Leu, Val, Thr, Met. We show that isotope labeling of Ala is improved using the transaminase inhibitor L-cycloserine, and labeling of Thr is improved through addition of Cys and Met, which are known inhibitors of homoserine dehydrogenase. We demonstrate the creation of long-lived 1H NMR signals in most amino acid residues using our model system, the WW domain of human Pin1, as well as the bacterial outer membrane protein PagP.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Cost-Benefit Analysis , Proton Magnetic Resonance Spectroscopy , Amino Acids, Aromatic , Amino Acids , Acyltransferases
6.
Pharmaceutics ; 14(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559288

ABSTRACT

Radiation therapy (RT) is frequently used to locally treat tumors. One of the major issues in RT is normal tissue toxicity; thus, it is necessary to limit dose escalation for enhanced local control in patients that have locally advanced tumors. Integrating radiosensitizing agents such as gold nanoparticles (GNPs) into RT has been shown to greatly increase the cure rate of solid tumors. The objective of this study was to explore the repurposing of an antimalarial drug, pyronaridine (PYD), as a DNA repair inhibitor to further enhance RT/GNP-induced DNA damage in cancerous cell lines. We were able to achieve inhibitory effects of DNA repair due to PYD at 500 nM concentration. Our results show a significant enhancement in DNA double-strand breaks of 42% in HeLa cells treated with PYD/GNP/RT in comparison to GNP/RT alone when irradiated with a dose of 2 Gy. Furthermore, there was a significant reduction in cellular proliferation for both HeLa and HCT-116 irradiated cells with the combined treatment of PYD/GNP/RT. Therefore, the emergence of promising novel concepts introduced in this study could lay the foundation for the transition of this treatment modality into clinical environments.

7.
EJNMMI Radiopharm Chem ; 7(1): 13, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35697954

ABSTRACT

BACKGROUND: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS: We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS: Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.

8.
Front Oncol ; 12: 819172, 2022.
Article in English | MEDLINE | ID: mdl-35372043

ABSTRACT

Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.

9.
Pharmaceutics ; 14(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35336019

ABSTRACT

Dual probes that possess positron emission tomography (PET) and fluorescence imaging (FI) capabilities are precision medicine tools that can be used to improve patient care and outcomes. Detecting tumor lesions using PET, an extremely sensitive technique, coupled with fluorescence-guided surgical resection of said tumor lesions can maximize the removal of cancerous tissue. The development of novel molecular probes is important for targeting different biomarkers as every individual case of cancer has different characteristics. This short review will discuss some aspects of dual PET/FI probes and explore the recently reported examples.

10.
Sci Rep ; 11(1): 11757, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083676

ABSTRACT

Invasive breast cancer (BrCa) is predicted to affect 1 in 9 women in a lifetime;1 in 32 will die from this disease. The most aggressive forms of BrCa, basal-like/triple-negative phenotype (TNBC), are challenging to treat and result in higher mortality due high number of metastatic cases. There is a paucity of options for TNBC treatment, which highlights the need for additional innovative treatment approaches. NIH-III mice were injected in the abdominal mammary fat pad with luciferase-expressing derivative of the human TNBC cell line, MDA-MB-231 cells. Animals were gavage-fed with nitrofen at the doses of 1, 3 or 6 mg/kg/alternate days. However, several structural properties/components of nitrofen raise concerns, including its high lipophilicity (cLogP of nearly 5) and a potential toxophore in the form of a nitroarene group. Therefore, we developed analogues of nitrofen which lack the nitro group and/or have replaced the diaryl ether linker with a diarylamine that could allow modulation of polarity. In vitro anti-invasiveness activity of nitrofen analogues were evaluated by quantitative determination of invasion of MDA-MB-231-Luciferase cells through Matrigel using a Boyden chamber. Our in vivo data show that nitrofen efficiently blocks TNBC tumor metastasis. In vitro data suggest that this is not due to cytotoxicity, but rather is due to impairment of invasive capacity of the cells. Further, using an in vitro model of EMT, we show that nitrofen interferes with the process of EMT and promotes mesenchymal to epithelial transformation. In addition, we show that three of the nitrofen analogues significantly reduced invasive potential of TNBC cells, which may, at least partially, be attributed to the analogues' ability to promote mesenchymal to epithelial-like transformation of TNBC cells. Our study shows that nitrofen, and more importantly its analogues, are significantly effective in limiting the invasive potential of TNBC cell lines with minimal cytotoxic effect. Further, we demonstrate that nitrofen its analogues, are very effective in reversing mesenchymal phenotype to a more epithelial-like phenotype. This may be significant for the treatment of patients with mesenchymal-TNBC tumor subtype who are well known to exhibit high resistance to chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Triple Negative Breast Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drug Discovery , Female , Humans , Mice , Molecular Structure , Neoplasm Invasiveness , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Rats , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
11.
Org Biomol Chem ; 19(14): 3241-3254, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33885579

ABSTRACT

Increased energy metabolism followed by enhanced glucose consumption is a hallmark of cancer. Most cancer cells show overexpression of facilitated hexose transporter GLUT1, including breast cancer. GLUT1 is the main transporter for 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the gold standard of positron emission tomography (PET) imaging in oncology. The present study's goal was to develop novel glucose-based dual imaging probes for their use in tandem PET and fluorescence (Fl) imaging. A glucosamine scaffold tagged with a fluorophore and an 18F-label should confer selectivity to GLUT1. Out of five different compounds, 2-deoxy-2-((7-sulfonylfluoro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-FBDG) possessed favorable fluorescent properties and a similar potency as 2-deoxy-2-((7-nitro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-NBDG) in competing for GLUT1 transport against 2-[18F]FDG in breast cancer cells. Radiolabeling with 18F was achieved through the synthesis of prosthetic group 7-fluoro-2,1,3-benzoxadiazole-4-sulfonyl [18F]fluoride ([18F]FBDF) followed by the reaction with glucosamine. The radiotracer was finally analyzed in vivo in a breast cancer xenograft model and compared to 2-[18F]FDG. Despite favourable in vitro fluorescence imaging properties, 2-[18F]FBDG was found to lack metabolic stability in vivo, resulting in radiodefluorination. Glucose-based 2-[18F]FBDG represents a novel dual-probe for GLUT1 imaging using FI and PET with the potential for further structural optimization for improved metabolic stability in vivo.


Subject(s)
Breast Neoplasms/diagnostic imaging , Fluorescent Dyes/chemistry , Fluorodeoxyglucose F18/chemistry , Glucose Transporter Type 1/analysis , Optical Imaging , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Animals , Cell Line, Tumor , Female , Fluorescent Dyes/chemical synthesis , Fluorodeoxyglucose F18/chemical synthesis , Humans , Mammary Neoplasms, Experimental/diagnostic imaging , Mice , Molecular Structure , Radiopharmaceuticals/chemical synthesis
12.
Cancer Chemother Pharmacol ; 87(2): 259-267, 2021 02.
Article in English | MEDLINE | ID: mdl-33399940

ABSTRACT

PURPOSE: The ERCC1-XPF 5'-3' DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. METHODS: We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein-protein interaction in cancer cells using proximity ligation assay. RESULTS: Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. CONCLUSION: Our results confirm the feasibility of the approach of targeting the protein-protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/drug therapy , DNA-Binding Proteins/genetics , Endonucleases/genetics , Lung Neoplasms/drug therapy , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cisplatin/administration & dosage , Colonic Neoplasms/genetics , Computer Simulation , DNA Repair/genetics , Drug Synergism , HCT116 Cells , Humans , Lung Neoplasms/genetics , Mitomycin/administration & dosage
13.
Pharmacol Ther ; 220: 107712, 2021 04.
Article in English | MEDLINE | ID: mdl-33121940

ABSTRACT

RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.


Subject(s)
Antiviral Agents , Respiratory Syncytial Virus Infections , Antiviral Agents/therapeutic use , Clinical Trials as Topic , Humans , Respiratory Syncytial Virus Infections/drug therapy
14.
Eur J Med Chem ; 204: 112658, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32738410

ABSTRACT

The structure-specific ERCC1-XPF endonuclease is essential for repairing bulky DNA lesions and helix distortions induced by UV radiation, which forms cyclobutane pyrimidine dimers (CPDs), or chemicals that crosslink DNA strands such as cyclophosphamide and platinum-based chemotherapeutic agents. Inhibition of the ERCC1-XPF endonuclease activity has been shown to sensitize cancer cells to these chemotherapeutic agents. In this study, we have conducted a structure activity relationship analysis based around the previously identified hit compound, 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin1-yl)methyl)phenol (F06), as a reference compound. Three different series of compounds have been rationally designed and successfully synthesized through various modifications on three different sites of F06 based on the corresponding suggestions of the previous pharmacophore model. The in vitro screening results revealed that 2-chloro-9-((3-((4-(2-(dimethylamino)ethyl)piperazin-1-yl)methyl)-4-hydroxyphenyl)amino)acridin-2-ol (B9) has a potent inhibitory effect on the ERCC1-XPF activity (IC50 = 0.49 µM), showing 3-fold improvement in inhibition activity compared to F06. In addition, B9 not only displayed better binding affinity to the ERCC1-XPF complex but also had the capacity to potentiate the cytotoxicity effect of UV radiation and inhibiting the nucleotide excision repair, by the inhibition of removal of CPDs, and cyclophosphamide toxicity to colorectal cancer cells.


Subject(s)
DNA Repair , DNA-Binding Proteins/antagonists & inhibitors , Drug Design , Endonucleases/antagonists & inhibitors , Cell Line, Tumor , Cell-Free System , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Humans , In Vitro Techniques
15.
Chem Biol Drug Des ; 95(4): 460-471, 2020 04.
Article in English | MEDLINE | ID: mdl-31891209

ABSTRACT

The heterodimer of DNA excision repair protein ERCC-1 and DNA repair endonuclease XPF (ERCC1-XPF) is a 5'-3' structure-specific endonuclease essential for the nucleotide excision repair (NER) pathway, and it is also involved in other DNA repair pathways. In cancer cells, ERCC1-XPF plays a central role in repairing DNA damage induced by chemotherapeutics including platinum-based and cross-linking agents; thus, its inhibition is a promising strategy to enhance the effect of these therapies. In this study, we rationally modified the structure of F06, a small molecule inhibitor of the ERCC1-XPF interaction (Molecular Pharmacology, 84, 2013 and 12), to improve its binding to the target. We followed a multi-step computational approach to investigate potential modification sites of F06, rationally design and rank a library of analogues, and identify candidates for chemical synthesis and in vitro testing. Our top compound, B5, showed an improved half-maximum inhibitory concentration (IC50 ) value of 0.49 µM for the inhibition of ERCC1-XPF endonuclease activit, and lays the foundation for further testing and optimization. Also, the computational approach reported here can be used to develop DNA repair inhibitors targeting the ERCC1-XPF complex.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Small Molecule Libraries/chemistry , Cross-Linking Reagents/chemistry , DNA Damage/drug effects , DNA Repair/drug effects , Drug Design , Endonucleases/metabolism , Enzyme Inhibitors/metabolism , Humans , Molecular Dynamics Simulation , Platinum/chemistry , Protein Binding , Small Molecule Libraries/metabolism , Structure-Activity Relationship
16.
Sci Rep ; 9(1): 12392, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455818

ABSTRACT

Blockade of the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction has emerged as a powerful strategy in cancer immunotherapy. Recently, there have been enormous efforts to develop potent PD-1/PD-L1 inhibitors. In particular, Bristol-Myers Squibb (BMS) and Aurigene Discovery Technologies have individually disclosed several promising PD-1/PD-L1 inhibitors, whose detailed experimental data are not publicly disclosed. In this work, we report the rigorous and systematic in vitro characterization of a selected set of potent PD-1/PD-L1 macrocyclic peptide (BMSpep-57) and small-molecule inhibitors (BMS-103, BMS-142) from BMS and a peptidomimetic small-molecule inhibitor from Aurigene (Aurigene-1) using a series of biochemical and cell-based assays. Our results confirm that BMS-103 and BMS-142 are strongly active in biochemical assays; however, their acute cytotoxicity greatly compromised their immunological activity. On the other hand, Aurigene-1 did not show any activity in both biochemical and immunological assays. Furthermore, we also report the discovery of a small-molecule immune modulator, whose mode-of-action is not clear; however, it exhibits favorable drug-like properties and strong immunological activity. We hope that the results presented here will be useful in guiding the development of next-generation PD-1/PD-L1 small molecule inhibitors.


Subject(s)
B7-H1 Antigen/metabolism , Small Molecule Libraries/metabolism , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/chemistry , B7-H1 Antigen/genetics , Binding Sites , Cell Survival/drug effects , Genes, Reporter , Humans , Immunoassay , Interleukin-2/metabolism , Jurkat Cells , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Dynamics Simulation , Peptidomimetics , Protein Binding , Protein Structure, Tertiary , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
17.
J Med Chem ; 62(17): 7684-7696, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31369707

ABSTRACT

The ERCC1-XPF heterodimer is a 5'-3' structure-specific endonuclease, which plays an essential role in several DNA repair pathways in mammalian cells. ERCC1-XPF is primarily involved in the repair of chemically induced helix-distorting and bulky DNA lesions, such as cyclobutane pyrimidine dimers (CPDs), and DNA interstrand cross-links. Inhibition of ERCC1-XPF has been shown to potentiate cytotoxicity of platinum-based drugs and cyclophosphamide in cancer cells. In this study, the previously described ERCC1-XPF inhibitor 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin-1-yl)methyl)phenol (compound 1) was used as a reference compound. Following the outcome of docking-based virtual screening (VS), we synthesized seven novel derivatives of 1 that were identified in silico as being likely to have high binding affinity for the ERCC1-XPF heterodimerization interface by interacting with the XPF double helix-hairpin-helix (HhH2) domain. Two of the new compounds, 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-cyclohexylpiperazin-1-yl)methyl)phenol (compound 3) and 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-(2-(dimethylamino)ethyl) piperazin-1-yl) methyl) phenol (compound 4), were shown to be potent inhibitors of ERCC1-XPF activity in vitro. Compound 4 showed significant inhibition of the removal of CPDs in UV-irradiated cells and the capacity to sensitize colorectal cancer cells to UV radiation and cyclophosphamide.


Subject(s)
DNA Repair , DNA, Neoplasm/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Endonucleases/antagonists & inhibitors , Pyrimidines/pharmacology , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Drug Design , Endonucleases/metabolism , HCT116 Cells , Humans , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Biochem Biophys Rep ; 16: 145-151, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30417133

ABSTRACT

The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1-77 and cTnI135-209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1-77 complex nor the cTnC-cTnI135-209 complex binds to MCI-154. Since residues 39-60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin.

19.
Chemistry ; 23(33): 8073-8081, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28346703

ABSTRACT

The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery.


Subject(s)
Glucose Transporter Type 1/metabolism , Hexoses/metabolism , Monosaccharide Transport Proteins/metabolism , Animals , Biological Transport , Cell Line, Tumor , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 5/chemistry , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/metabolism , Hexoses/chemistry , Humans , Hydrogen Bonding , Mannitol/analogs & derivatives , Mannitol/chemistry , Mice , Microscopy, Confocal , Monosaccharide Transport Proteins/chemistry , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Xenopus laevis/growth & development , Xenopus laevis/metabolism
20.
Chemistry ; 22(31): 10763-7, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27219685

ABSTRACT

1,2-Cyclohexadienes are transient intermediates that undergo rapid dimerization and intermolecular trapping with activated olefins and heteroatomic nucleophiles. Fluoride-mediated desilylative elimination of readily accessible 6-silylcyclohexene-1-triflates allows the mild, chemoselective, and functional-group tolerant generation of cyclic allene intermediates, which undergo efficient trapping reactions with stable 1,3-dipoles. The reactions proceed with high levels of both regio- and diastereoselectivity. The reaction of cyclic allenes with azides is accompanied by the facile loss of dinitrogen, resulting in the formation of tetrahydroindoles or polycylic aziridines depending on the azide employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...