Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 19383, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169098

ABSTRACT

The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to ß-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated ß-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.


Subject(s)
Adrenergic beta-Agonists , Isoproterenol , Animals , Adrenergic beta-Agonists/pharmacology , Rats , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Myocardium/metabolism , Myocardium/pathology , Diabetes Mellitus, Type 1/metabolism , Glucose/metabolism , Disease Models, Animal , Heart/drug effects
2.
Pulm Circ ; 14(3): e12425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39157054

ABSTRACT

Carnitine is required to transport fatty acid across the mitochondrial membrane to undergo beta oxidation. In addition to disorders of fatty acid metabolism, a relative carnitine deficiency has been reported in pulmonary arterial hypertension (PAH). Here we performed an observational study in which food and supplement consumption were collected in an observation period followed by open label administration of a carnitine supplement to determine feasibility of increasing plasma carnitine levels in humans PAH. We confirmed that relative carnitine deficiency in PAH is not due to reduced dietary consumption and that plasma levels of carnitine can be increased in PAH patients with supplementation that is well tolerated.

3.
Anesthesiol Clin ; 42(3): 515-528, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39054024

ABSTRACT

Ethical principles regarding respect for patient autonomy in medical decision-making and the impact of religion, culture, and other issues on clinical care have been extensively reviewed in the medical literature. At the same time, despite physicians having an understanding of the underlying ethical principles in clinical decision-making, challenges arise when managing complicated clinical problems for which medical treatment is available, but not acceptable to the patient. For example, many anesthesiologists are challenged when caring for one of Jehohah's Witnesses who refuses to receive blood or blood products despite the potential consequences of doing so.


Subject(s)
Culture , Humans , Religion , Personal Autonomy , Jehovah's Witnesses , Religion and Medicine
4.
EMBO J ; 43(13): 2813-2833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778155

ABSTRACT

Although costly to maintain, protein homeostasis is indispensable for normal cellular function and long-term health. In mammalian cells and tissues, daily variation in global protein synthesis has been observed, but its utility and consequences for proteome integrity are not fully understood. Using several different pulse-labelling strategies, here we gain direct insight into the relationship between protein synthesis and abundance proteome-wide. We show that protein degradation varies in-phase with protein synthesis, facilitating rhythms in turnover rather than abundance. This results in daily consolidation of proteome renewal whilst minimising changes in composition. Coupled rhythms in synthesis and turnover are especially salient to the assembly of macromolecular protein complexes, particularly the ribosome, the most abundant species of complex in the cell. Daily turnover and proteasomal degradation rhythms render cells and mice more sensitive to proteotoxic stress at specific times of day, potentially contributing to daily rhythms in the efficacy of proteasomal inhibitors against cancer. Our findings suggest that circadian rhythms function to minimise the bioenergetic cost of protein homeostasis through temporal consolidation of protein turnover.


Subject(s)
Circadian Rhythm , Proteome , Animals , Circadian Rhythm/physiology , Proteome/metabolism , Mice , Protein Biosynthesis , Humans , Proteasome Endopeptidase Complex/metabolism , Ribosomes/metabolism , Proteolysis , Proteostasis , Mice, Inbred C57BL
5.
Science ; 385(6704): eadk4898, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38781354

ABSTRACT

After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.


Subject(s)
Adenosine Triphosphate , B-Lymphocytes , Cell Transformation, Viral , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Indoleamine-Pyrrole 2,3,-Dioxygenase , NAD , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Proliferation , Electron Transport Complex I/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Lymphoma/virology , NAD/metabolism , Viral Proteins , Viremia
6.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38626311

ABSTRACT

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Subject(s)
Endothelial Cells , Polyamines , Animals , Humans , Polyamines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Cell Proliferation , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Arterial Hypertension/enzymology , Pulmonary Arterial Hypertension/pathology , Apoptosis , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Endosomes/metabolism , Biological Transport , Disease Models, Animal , Cells, Cultured , Phenotype , Mice, Inbred C57BL , Mice
7.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38507255

ABSTRACT

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathy, Hypertrophic , Humans , Peroxisome Proliferator-Activated Receptors , Cardiomyopathy, Hypertrophic/genetics , Hypertrophy, Left Ventricular/genetics , Aortic Valve Stenosis/genetics , Fatty Acids/metabolism
9.
Sci Rep ; 14(1): 4932, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418847

ABSTRACT

One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue , Mice , Animals , Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Energy Metabolism , Adipose Tissue, White/metabolism , Ethers , Phenols/pharmacology , Uncoupling Protein 1/metabolism
10.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38410870

ABSTRACT

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Subject(s)
Disease Models, Animal , Sulfur Dioxide , Animals , Mice , Mice, Inbred C57BL , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Lung/pathology , Lung/drug effects , Lung/metabolism , Male , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Mice, Transgenic , Vascular Remodeling/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Endothelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL