Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nature ; 598(7882): 662-666, 2021 10.
Article in English | MEDLINE | ID: mdl-34616044

ABSTRACT

The availability of L-arginine in tumours is a key determinant of an efficient anti-tumour T cell response1-4. Consequently, increases of typically low L-arginine concentrations within the tumour may greatly potentiate the anti-tumour responses of immune checkpoint inhibitors, such as programmed death-ligand 1 (PD-L1)-blocking antibodies5. However, currently no means are available to locally increase intratumoural L-arginine levels. Here we used a synthetic biology approach to develop an engineered probiotic Escherichia coli Nissle 1917 strain that colonizes tumours and continuously converts ammonia, a metabolic waste product that accumulates in tumours6, to L-arginine. Colonization of tumours with these bacteria increased intratumoural L-arginine concentrations, increased the number of tumour-infiltrating T cells and had marked synergistic effects with PD-L1 blocking antibodies in the clearance of tumours. The anti-tumour effect of these bacteria was mediated by L-arginine and was dependent on T cells. These results show that engineered microbial therapies enable metabolic modulation of the tumour microenvironment leading to enhanced efficacy of immunotherapies.


Subject(s)
Immunotherapy/methods , Metabolic Engineering , Microorganisms, Genetically-Modified , Neoplasms, Experimental/therapy , Adoptive Transfer , Animals , Arginine/metabolism , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Escherichia coli , Female , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/microbiology , Probiotics , Proteome , Synthetic Biology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
2.
Nat Commun ; 11(1): 2739, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483165

ABSTRACT

Synthetic biology is a powerful tool to create therapeutics which can be rationally designed to enable unique and combinatorial functionalities. Here we utilize non-pathogenic E coli Nissle as a versatile platform for the development of a living biotherapeutic for the treatment of cancer. The engineered bacterial strain, referred to as SYNB1891, targets STING-activation to phagocytic antigen-presenting cells (APCs) in the tumor and activates complementary innate immune pathways. SYNB1891 treatment results in efficacious antitumor immunity with the formation of immunological memory in murine tumor models and robust activation of human APCs. SYNB1891 is designed to meet manufacturability and regulatory requirements with built in biocontainment features which do not compromise its efficacy. This work provides a roadmap for the development of future therapeutics and demonstrates the transformative potential of synthetic biology for the treatment of human disease when drug development criteria are incorporated into the design process for a living medicine.


Subject(s)
Escherichia coli/immunology , Immunotherapy/methods , Membrane Proteins/immunology , Neoplasms/therapy , Signal Transduction/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Cell Line, Tumor , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/genetics , Neoplasms/immunology , Phagocytes/immunology , Phagocytes/metabolism , Signal Transduction/genetics , Synthetic Biology/methods , Synthetic Biology/trends
3.
Sci Transl Med ; 11(475)2019 01 16.
Article in English | MEDLINE | ID: mdl-30651324

ABSTRACT

The intestine is a major source of systemic ammonia (NH3); thus, capturing part of gut NH3 may mitigate disease symptoms in conditions of hyperammonemia such as urea cycle disorders and hepatic encephalopathy. As an approach to the lowering of blood ammonia arising from the intestine, we engineered the orally delivered probiotic Escherichia coli Nissle 1917 to create strain SYNB1020 that converts NH3 to l-arginine (l-arg). We up-regulated arginine biosynthesis in SYNB1020 by deleting a negative regulator of l-arg biosynthesis and inserting a feedback-resistant l-arg biosynthetic enzyme. SYNB1020 produced l-arg and consumed NH3 in an in vitro system. SYNB1020 reduced systemic hyperammonemia, improved survival in ornithine transcarbamylase-deficient spfash mice, and decreased hyperammonemia in the thioacetamide-induced liver injury mouse model. A phase 1 clinical study was conducted including 52 male and female healthy adult volunteers. SYNB1020 was well tolerated at daily doses of up to 1.5 × 1012 colony-forming units administered for up to 14 days. A statistically significant dose-dependent increase in urinary nitrate, plasma 15N-nitrate (highest dose versus placebo, P = 0.0015), and urinary 15N-nitrate was demonstrated, indicating in vivo SYNB1020 activity. SYNB1020 concentrations reached steady state by the second day of dosing, and excreted cells were alive and metabolically active as evidenced by fecal arginine production in response to added ammonium chloride. SYNB1020 was no longer detectable in feces 2 weeks after the last dose. These results support further clinical development of SYNB1020 for hyperammonemia disorders including urea cycle disorders and hepatic encephalopathy.


Subject(s)
Escherichia coli/genetics , Genetic Engineering , Healthy Volunteers , Hyperammonemia/therapy , Ammonia/blood , Ammonia/metabolism , Animals , Arginine/metabolism , Biosynthetic Pathways , Disease Models, Animal , Feces/chemistry , Female , Humans , Hyperammonemia/blood , Hyperammonemia/urine , Macaca fascicularis , Male , Mice , Nitrates/blood , Nitrates/urine , Stress, Physiological/genetics , Survival Analysis
4.
Nat Biotechnol ; 36(9): 857-864, 2018 10.
Article in English | MEDLINE | ID: mdl-30102294

ABSTRACT

Phenylketonuria (PKU) is a genetic disease that is characterized by an inability to metabolize phenylalanine (Phe), which can result in neurotoxicity. To provide a potential alternative to a protein-restricted diet, we engineered Escherichia coli Nissle to express genes encoding Phe-metabolizing enzymes in response to anoxic conditions in the mammalian gut. Administration of our synthetic strain, SYNB1618, to the Pahenu2/enu2 PKU mouse model reduced blood Phe concentration by 38% compared with the control, independent of dietary protein intake. In healthy Cynomolgus monkeys, we found that SYNB1618 inhibited increases in serum Phe after an oral Phe dietary challenge. In mice and primates, Phe was converted to trans-cinnamate by SYNB1618, quantitatively metabolized by the host to hippurate and excreted in the urine, acting as a predictive biomarker for strain activity. SYNB1618 was detectable in murine or primate feces after a single oral dose, permitting the evaluation of pharmacodynamic properties. Our results define a strategy for translation of live bacterial therapeutics to treat metabolic disorders.


Subject(s)
Genetic Therapy , Phenylketonurias/therapy , Biomarkers/metabolism , Escherichia coli/genetics , Humans , Phenylketonurias/metabolism
5.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915199

ABSTRACT

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Lymphoma, Mantle-Cell/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Male , Methylation , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , snRNP Core Proteins/metabolism
6.
PLoS One ; 9(12): e115228, 2014.
Article in English | MEDLINE | ID: mdl-25542032

ABSTRACT

HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.


Subject(s)
Benzoquinones/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/administration & dosage , Lung Neoplasms/drug therapy , Taxoids/administration & dosage , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzoquinones/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Docetaxel , Down-Regulation , Drug Synergism , Humans , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/metabolism , Male , Taxoids/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
7.
Am J Pathol ; 180(4): 1441-53, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22342522

ABSTRACT

The Hedgehog (Hh) signaling pathway regulates tissue patterning during development, including patterning and growth of limbs and face, but whether Hh signaling plays a role in adult kidney remains undefined. In this study, using a panel of hedgehog-reporter mice, we show that the two Hh ligands (Indian hedgehog and sonic hedgehog ligands) are expressed in tubular epithelial cells. We report that the Hh effectors (Gli1 and Gli2) are expressed exclusively in adjacent platelet-derived growth factor receptor-ß-positive interstitial pericytes and perivascular fibroblasts, suggesting a paracrine signaling loop. In two models of renal fibrosis, Indian Hh ligand was upregulated with a dramatic activation of downstream Gli effector expression. Hh-responsive Gli1-positive interstitial cells underwent 11-fold proliferative expansion during fibrosis, and both Gli1- and Gli2-positive cells differentiated into α-smooth muscle actin-positive myofibroblasts. In the pericyte-like cell line 10T1/2, hedgehog ligand triggered cell proliferation, suggesting a possible role for this pathway in the regulation of cell cycle progression of myofibroblast progenitors during the development of renal fibrosis. The hedgehog antagonist IPI-926 abolished Gli1 induction in vivo but did not decrease kidney fibrosis. However, the transcriptional induction of Gli2 was unaffected by IPI-926, suggesting the existence of smoothened-independent Gli activation in this model. This study is the first detailed description of paracrine hedgehog signaling in adult kidney, which indicates a possible role for hedgehog-Gli signaling in fibrotic chronic kidney disease.


Subject(s)
Hedgehog Proteins/metabolism , Kidney/pathology , Animals , Cell Line , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Epithelial Cells/metabolism , Fibroblasts/metabolism , Fibrosis , Kidney/metabolism , Kidney Tubules/metabolism , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/metabolism , Ligands , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Paracrine Communication/physiology , Patched Receptors , Pericytes/metabolism , Pericytes/pathology , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Veratrum Alkaloids/pharmacology , Zinc Finger Protein GLI1 , Zinc Finger Protein Gli2
9.
Mol Cancer Ther ; 10(5): 817-24, 2011 May.
Article in English | MEDLINE | ID: mdl-21383049

ABSTRACT

Hsp90 facilitates the maturation and stability of numerous oncoproteins, including HER2. The aim of this study was to assess the antitumor activity of the Hsp90 inhibitor IPI-504 in trastuzumab-resistant, HER2-overexpressing breast cancer cells. Therapy with trastuzumab, IPI-504, and the combination of trastuzumab and IPI-504 was evaluated in trastuzumab-sensitive and trastuzumab-resistant cells. Inhibition of protein targets, cell proliferation, and tumor growth was assessed in vitro and in xenograft models. IPI-504 inhibited proliferation of both trastuzumab-sensitive and trastuzumab-resistant cells. Administration of IPI-504 markedly reduced total levels of HER2 and Akt, as well as phosphorylated Akt and mitogen-activated protein kinase (MAPK), to an equal extent in trastuzumab-sensitive and trastuzumab-resistant cells. IPI-504, used as single agent or in combination with trastuzumab, also inhibited in vivo the growth of both trastuzumab-sensitive and -resistant tumor xenografts. As a mechanism for the observed antitumor activity, IPI-504 resulted in a marked decrease in the levels of HER2, Akt, p-Akt, and p-MAPK in trastuzumab-resistant xenografts as early as 12 hours after a single dose of IPI-504. IPI-504-mediated Hsp90 inhibition may represent a novel therapeutic approach in trastuzumab refractory HER2-positive breast cancer.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Receptor, ErbB-2/metabolism , Animals , Antibodies, Monoclonal, Humanized , Benzoquinones/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Lactams, Macrocyclic/chemistry , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Trastuzumab , Xenograft Model Antitumor Assays
10.
J Biol Chem ; 285(51): 39835-43, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20940293

ABSTRACT

Several Hsp90 (heat shock protein 90) inhibitors are currently under clinical evaluation as anticancer agents. However, the correlation between the duration and magnitude of Hsp90 inhibition and the downstream effects on client protein degradation and cancer cell growth inhibition has not been thoroughly investigated. To investigate the relationship between Hsp90 inhibition and cellular effects, we developed a method that measures drug occupancy on Hsp90 after treatment with the Hsp90 inhibitor IPI-504 in living cells and in tumor xenografts. In cells, we find the level of Hsp90 occupancy to be directly correlated with cell growth inhibition. At the molecular level, the relationship between Hsp90 occupancy and Hsp90 client protein degradation was examined for different client proteins. For sensitive Hsp90 clients (e.g. HER2 (human epidermal growth factor receptor 2), client protein levels directly mirror Hsp90 occupancy at all time points after IPI-504 administration. For insensitive client proteins, we find that protein abundance matches Hsp90 occupancy only after prolonged incubation with drug. Additionally, we investigate the correlation between plasma pharmacokinetics (PK), tumor PK, pharmacodynamics (PD) (client protein degradation), tumor growth inhibition, and Hsp90 occupancy in a xenograft model of human cancer. Our results indicate Hsp90 occupancy to be a better predictor of PD than either plasma PK or tumor PK. In the nonsmall cell lung cancer xenograft model studied, a linear correlation between Hsp90 occupancy and tumor growth inhibition was found. This novel binding assay was evaluated both in vitro and in vivo and could be used as a pharmacodynamic readout in the clinic.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzoquinones/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacokinetics , Lung Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/metabolism , Mice , Mice, Nude
11.
Sci Signal ; 2(77): ra31, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19567914

ABSTRACT

The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-3/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , ErbB Receptors/metabolism , Humans , Ligands , Mice , Phosphorylation , Protein Binding , Receptor, ErbB-3/immunology , Signal Transduction , Transplantation, Heterologous
12.
Cancer Res ; 65(18): 8423-32, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16166321

ABSTRACT

The fact that small cell lung cancer (SCLC) is commonly incurable despite being initially responsive to chemotherapy, combined with disappointing results from a recent SCLC clinical trial with imatinib, has intensified efforts to identify mechanisms of SCLC resistance. Adhesion to extracellular matrix (ECM) is one mechanism that can increase therapeutic resistance in SCLC cells. To address whether adhesion to ECM increases resistance through modulation of signaling pathways, a series of SCLC cell lines were plated on various ECM components, and activation of two signaling pathways that promote cellular survival, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathway, was assessed. Although differential activation was observed, adhesion to laminin increased Akt activation, increased cellular survival after serum starvation, and caused the cells to assume a flattened, epithelial morphology. Inhibitors of the PI3K/Akt/mTOR pathway (LY294002, rapamycin) but not the MEK/ERK pathway (U0126) abrogated laminin-mediated survival. SCLC cells plated on laminin were not only resistant to serum starvation-induced apoptosis but were also resistant to apoptosis caused by imatinib. Combining imatinib with LY294002 or rapamycin but not U0126 caused greater than additive increases in apoptosis compared with apoptosis caused by the inhibitor or imatinib alone. Similar results were observed when adenoviruses expressing mutant Akt were combined with imatinib, or when LY294002 was combined with cisplatin or etoposide. These studies identify laminin-mediated activation of the PI3K/Akt/mTOR pathway as a mechanism of cellular survival and therapeutic resistance in SCLC cells and suggest that inhibition of the PI3K/Akt/mTOR pathway is one strategy to overcome SCLC resistance mediated by ECM.


Subject(s)
Carcinoma, Small Cell/enzymology , Lung Neoplasms/enzymology , Phosphoinositide-3 Kinase Inhibitors , Piperazines/pharmacology , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Benzamides , Carcinoma, Small Cell/pathology , Cell Adhesion/physiology , Cell Survival/drug effects , Cell Survival/physiology , Chromones/pharmacology , Drug Resistance, Neoplasm , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Imatinib Mesylate , Laminin/pharmacology , Lung Neoplasms/pathology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases
14.
Cancer Res ; 64(8): 2782-92, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15087394

ABSTRACT

Activation of the PI3k/Akt pathway controls key cellular processes and contributes to tumorigenesis in vivo, but investigation of the PI3k/Akt pathway has been limited by the lack of specific inhibitors directed against Akt. To develop Akt inhibitors, we used molecular modeling of the pleckstrin homology (PH) domain of Akt to guide synthesis of structurally modified phosphatidylinositol ether lipid analogues (PIAs). Here, we characterize the biochemical and cellular effects of PIAs. Of 24 compounds tested, five PIAs with modifications at two sites on the inositol ring inhibited Akt with IC(50)s < 5 micro M. Molecular modeling identified putative interactions of PIAs with the phosphoinositide-binding site in the PH domain of Akt, and growth factor-induced translocation of Akt to the plasma membrane was inhibited by PIA administration. Inhibition of Akt occurred rapidly and was maintained for hours. PIAs decreased phosphorylation of many downstream targets of Akt without affecting upstream kinases, such as PI3k or phosphoinositide-dependent kinase-1, or members of other kinase pathways such as extracellular signal-regulated kinase. Importantly, PIAs increased apoptosis 20-30-fold in cancer cell lines with high levels of endogenous Akt activity but only 4-5-fold in cancer cell lines with low levels of Akt activity. These studies identify PIAs as effective Akt inhibitors, and provide proof of principle for targeting the PH domain of Akt.


Subject(s)
Phosphatidylinositols/pharmacology , Phospholipid Ethers/pharmacology , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Hydrogen-Ion Concentration , Insulin-Like Growth Factor I/pharmacology , Kinetics , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Models, Molecular , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Structure-Activity Relationship , Substrate Specificity , Transfection
15.
Cancer Res ; 64(2): 446-51, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14744754

ABSTRACT

The role of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway during tobacco carcinogen-induced transformation is unknown. To address this question, we evaluated this pathway in isogenic immortalized or tumorigenic human bronchial epithelial cells in vitro, as well as in progressive murine lung lesions induced by a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Compared with immortalized cells, tumorigenic cells had greater activation of the PI3K/Akt pathway, enhanced survival, and increased apoptosis in response to inhibition of the pathway. In vivo, increased activation of Akt and mammalian target of rapamycin was observed with increased phenotypic progression. Collectively, these results support the hypothesis that maintenance of Akt activity is necessary for survival of preneoplastic as well as transformed lung epithelial cells and suggest that inhibition of the PI3K/Akt pathway might be a useful approach to arrest lung tumorigenesis.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/drug effects , Nicotiana/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Enzyme Activation , Humans , Lung , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Precancerous Conditions/enzymology , Precancerous Conditions/pathology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt , Respiratory Mucosa
16.
Cancer Res ; 63(4): 780-6, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12591726

ABSTRACT

Drugs that target protein kinase C (PKC) are now being evaluated in patients with non-small cell lung cancer (NSCLC), but the role of PKC in NSCLC cells remains unclear. We report here that NSCLC cell lines show enhanced phosphorylation and altered expression of specific PKC isoforms compared with normal lung epithelial cells. PKC inhibition variably increased apoptosis, with rottlerin, a PKCdelta inhibitor, being most effective and potentiating chemotherapy-induced apoptosis, especially with trastuzumab. Consistent with PKCdelta being anti-apoptotic in NSCLC cells, transient transfection of a kinase-dead mutant of PKCdelta increased apoptosis and potentiated chemotherapy-induced apoptosis. Our studies provide a rationale for targeting PKC isoforms in NSCLC cells, especially PKCdelta.


Subject(s)
Acetophenones/pharmacology , Benzopyrans/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Enzyme Inhibitors/pharmacology , Lung Neoplasms/enzymology , Protein Kinase C/antagonists & inhibitors , Acetophenones/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Benzopyrans/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , Drug Synergism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/biosynthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Phosphorylation , Protein Kinase C/biosynthesis , Protein Kinase C/genetics , Protein Kinase C-delta , Transfection , Trastuzumab
17.
J Clin Invest ; 111(1): 81-90, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12511591

ABSTRACT

Tobacco-related diseases such as lung cancer cause over 4.2 million deaths annually, with approximately 400,000 deaths per year occurring in the US. Genotoxic effects of tobacco components have been described, but effects on signaling pathways in normal cells have not been described. Here, we show activation of the serine/threonine kinase Akt in nonimmortalized human airway epithelial cells in vitro by two components of cigarette smoke, nicotine and the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Activation of Akt by nicotine or NNK occurred within minutes at concentrations achievable by smokers and depended upon alpha(3)-/alpha(4)-containing or alpha(7)-containing nicotinic acetylcholine receptors, respectively. Activated Akt increased phosphorylation of downstream substrates such as GSK-3, p70(S6K), 4EBP-1, and FKHR. Treatment with nicotine or NNK attenuated apoptosis caused by etoposide, ultraviolet irradiation, or hydrogen peroxide and partially induced a transformed phenotype manifest as loss of contact inhibition and loss of dependence on exogenous growth factors or adherence to ECM. In vivo, active Akt was detected in airway epithelial cells and lung tumors from NNK-treated A/J mice, and in human lung cancers derived from smokers. Redundant Akt activation by nicotine and NNK could contribute to tobacco-related carcinogenesis by regulating two processes critical for tumorigenesis, cell growth and apoptosis.


Subject(s)
Bronchi/drug effects , Carcinogens , Epithelial Cells/drug effects , Nicotiana , Nicotine , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Adaptor Proteins, Signal Transducing , Apoptosis , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Death , Cell Survival , Cells, Cultured , DNA-Binding Proteins/metabolism , Enzyme Activation , Enzyme-Linked Immunosorbent Assay , Forkhead Box Protein O1 , Forkhead Transcription Factors , Glycogen Synthase Kinase 3/metabolism , Humans , Immunoblotting , Immunohistochemistry , Lung Neoplasms/metabolism , Nitrosamines , Phenotype , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Time Factors , Transcription Factors/metabolism , Ultraviolet Rays
18.
Mol Biol Cell ; 13(5): 1550-65, 2002 May.
Article in English | MEDLINE | ID: mdl-12006652

ABSTRACT

The precise temporal-spatial regulation of the p21-activated serine-threonine kinase PAK at the plasma membrane is required for proper cytoskeletal reorganization and cell motility. However, the mechanism by which PAK localizes to focal adhesions has not yet been elucidated. Indirect binding of PAK to the focal adhesion protein paxillin via the Arf-GAP protein paxillin kinase linker (PKL) and PIX/Cool suggested a mechanism. In this report, we demonstrate an essential role for a paxillin-PKL interaction in the recruitment of activated PAK to focal adhesions. Similar to PAK, expression of activated Cdc42 and Rac1, but not RhoA, stimulated the translocation of PKL from a generally diffuse localization to focal adhesions. Expression of the PAK regulatory domain (PAK1-329) or the autoinhibitory domain (AID 83-149) induced PKL, PIX, and PAK localization to focal adhesions, indicating a role for PAK scaffold activation. We show PIX, but not NCK, binding to PAK is necessary for efficient focal adhesion localization of PAK and PKL, consistent with a PAK-PIX-PKL linkage. Although PAK activation is required, it is not sufficient for localization. The PKL amino terminus, containing the PIX-binding site, but lacking paxillin-binding subdomain 2 (PBS2), was unable to localize to focal adhesions and also abrogated PAK localization. An identical result was obtained after PKLDeltaPBS2 expression. Finally, neither PAK nor PKL was capable of localizing to focal adhesions in cells overexpressing paxillinDeltaLD4, confirming a requirement for this motif in recruitment of the PAK-PIX-PKL complex to focal adhesions. These results suggest a GTP-Cdc42/GTP-Rac triggered multistep activation cascade leading to the stimulation of the adaptor function of PAK, which through interaction with PIX provokes a functional PKL PBS2-paxillin LD4 association and consequent recruitment to focal adhesions. This mechanism is probably critical for the correct subcellular positioning of PAK, thereby influencing the ability of PAK to coordinate cytoskeletal reorganization associated with changes in cell shape and motility.


Subject(s)
Cytoskeletal Proteins/metabolism , Focal Adhesions/metabolism , GTPase-Activating Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Animals , CHO Cells , Cell Cycle Proteins/metabolism , Cricetinae , Fluorescent Antibody Technique , Guanine Nucleotide Exchange Factors/metabolism , Oncogene Proteins/metabolism , Paxillin , Protein Structure, Tertiary , Rho Guanine Nucleotide Exchange Factors , Sequence Deletion , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
19.
Drug Resist Updat ; 5(6): 234-48, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12531180

ABSTRACT

The resistance of many types of cancer to conventional chemotherapies is a major factor undermining successful cancer treatment. In this review, the role of a signal transduction pathway comprised of the lipid kinase, phosphatidylinositol 3-kinase (PI3K), and the serine/threonine kinase, Akt (or PKB), in chemotherapeutic resistance will be explored. Activation of this pathway plays a pivotal role in essential cellular functions such as survival, proliferation, migration and differentiation that underlie the biology of human cancer. Akt activation also contributes to tumorigenesis and tumor metastasis, and as shown most recently, resistance to chemotherapy. Modulating Akt activity is now a commonly observed endpoint of chemotherapy administration or administration of chemopreventive agents. Studies performed in vitro and in vivo combining small molecule inhibitors of the PI3K/Akt pathway with standard chemotherapy have been successful in attenuating chemotherapeutic resistance. As a result, small molecules designed to specifically target Akt and other components of the pathway are now being developed for clinical use as single agents and in combination with chemotherapy to overcome therapeutic resistance. Specifically inhibiting Akt activity may be a valid approach to treat cancer and increase the efficacy of chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Enzyme Activation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Retroviridae Proteins, Oncogenic/metabolism , Animals , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/prevention & control , Oncogene Protein v-akt , Phosphoinositide-3 Kinase Inhibitors , Retroviridae Proteins, Oncogenic/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...