Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Aging Cell ; 22(3): e13763, 2023 03.
Article in English | MEDLINE | ID: mdl-36617632

ABSTRACT

Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.


Subject(s)
Glucose , Longevity , Animals , Humans , Forkhead Box Protein O3/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Insulin/genetics , Insulin/metabolism , Longevity/genetics , Phosphatidylinositol 3-Kinases/genetics , RNA, Messenger
2.
JCI Insight ; 7(17)2022 08 09.
Article in English | MEDLINE | ID: mdl-35943801

ABSTRACT

Despite intensive therapy, children with high-risk neuroblastoma are at risk of treatment failure. We applied a multiomic system approach to evaluate metabolic vulnerabilities in human neuroblastoma. We combined metabolomics, CRISPR screening, and transcriptomic data across more than 700 solid tumor cell lines and identified dihydroorotate dehydrogenase (DHODH), a critical enzyme in pyrimidine synthesis, as a potential treatment target. Of note, DHODH inhibition is currently under clinical investigation in patients with hematologic malignancies. In neuroblastoma, DHODH expression was identified as an independent risk factor for aggressive disease, and high DHODH levels correlated to worse overall and event-free survival. A subset of tumors with the highest DHODH expression was associated with a dismal prognosis, with a 5-year survival of less than 10%. In xenograft and transgenic neuroblastoma mouse models treated with the DHODH inhibitor brequinar, tumor growth was dramatically reduced, and survival was extended. Furthermore, brequinar treatment was shown to reduce the expression of MYC targets in 3 neuroblastoma models in vivo. A combination of brequinar and temozolomide was curative in the majority of transgenic TH-MYCN neuroblastoma mice, indicating a highly active clinical combination therapy. Overall, DHODH inhibition combined with temozolomide has therapeutic potential in neuroblastoma, and we propose this combination for clinical testing.


Subject(s)
Neuroblastoma , Oxidoreductases Acting on CH-CH Group Donors , Animals , Dihydroorotate Dehydrogenase , Humans , Mice , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Prognosis , Temozolomide
4.
Cancer Res ; 82(3): 484-496, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34853072

ABSTRACT

Cancer therapy frequently fails due to the emergence of resistance. Many tumors include phenotypically immature tumor cells, which have been implicated in therapy resistance. Neuroblastoma cells can adopt a lineage-committed adrenergic (ADRN) or an immature mesenchymal (MES) state. They differ in epigenetic landscape and transcription factors, and MES cells are more resistant to chemotherapy. Here we analyzed the response of MES cells to targeted drugs. Activating anaplastic lymphoma kinase (ALK) mutations are frequently found in neuroblastoma and ALK inhibitors (ALKi) are in clinical trials. ALKi treatment of ADRN neuroblastoma cells with a tumor-driving ALK mutation induced cell death. Conversely, MES cells did not express either mutant or wild-type ALK and were resistant to ALKi, and MES cells formed tumors that progressed under ALKi therapy. In assessing the role of MES cells in relapse development, TRAIL was identified to specifically induce apoptosis in MES cells and to suppress MES tumor growth. Addition of TRAIL to ALKi treatment of neuroblastoma xenografts delayed relapses in a subset of the animals, suggesting a role for MES cells in relapse formation. While ADRN cells resembled normal embryonal neuroblasts, MES cells resembled immature precursor cells, which also lacked ALK expression. Resistance to targeted drugs can therefore be an intrinsic property of immature cancer cells based on their resemblance to developmental precursors. SIGNIFICANCE: In neuroblastoma, mesenchymal tumor cells lack expression of the tumor-driving ALK oncogene and are resistant to ALKi, but dual treatment with ALKi and mesenchymal cell-targeting TRAIL delays tumor relapse.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Neuroblastoma/genetics , Cell Line, Tumor , Humans , Neuroblastoma/pathology
5.
Nat Commun ; 10(1): 1530, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948783

ABSTRACT

Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.


Subject(s)
Adrenergic Neurons/pathology , Cellular Reprogramming/genetics , Mesenchymal Stem Cells/pathology , Neuroblastoma/pathology , Receptor, Notch3/physiology , Adrenergic Neurons/metabolism , Cell Line, Tumor , Epigenesis, Genetic , Feedback, Physiological , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mesenchymal Stem Cells/metabolism , Neuroblastoma/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
6.
EBioMedicine ; 42: 97-108, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30824386

ABSTRACT

BACKGROUND: The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. METHODS: Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. FINDINGS: Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a "one-two punch" strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. INTERPRETATION: This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.


Subject(s)
HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/metabolism , TOR Serine-Threonine Kinases/metabolism , Virus Latency , Adult , Aged , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Models, Biological , NF-kappa B/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-fos/chemistry , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/chemistry , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , Virus Latency/immunology
7.
Oncogene ; 38(15): 2690-2705, 2019 04.
Article in English | MEDLINE | ID: mdl-30538293

ABSTRACT

ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the 'HMG-box transcription factor 1' (HBP1) through the PI3K-AKT-FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , High Mobility Group Proteins/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Repressor Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Forkhead Box Protein O3/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , MicroRNAs/genetics , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
8.
Nat Genet ; 49(8): 1261-1266, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650485

ABSTRACT

Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP-seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic , Neuroblastoma/genetics , Neuroblastoma/pathology , AC133 Antigen/genetics , Adrenergic Neurons/cytology , Cell Line, Tumor , Cell Lineage , Homeodomain Proteins/genetics , Humans , Mesoderm/cytology , Transcription Factors/metabolism , Transcriptome
9.
Oncotarget ; 7(19): 27946-58, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27056887

ABSTRACT

The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Bcl-2-Like Protein 11/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cytochromes c/metabolism , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Mice , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neuroblastoma/pathology , Sulfonamides/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Nat Genet ; 47(8): 864-71, 2015 08.
Article in English | MEDLINE | ID: mdl-26121087

ABSTRACT

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Subject(s)
MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , ras Proteins/genetics , Anaplastic Lymphoma Kinase , Animals , Benzimidazoles/pharmacology , Blotting, Western , Cell Line, Tumor , Child , Child, Preschool , Chromosome Aberrations , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Infant , Male , Mice, SCID , Mitogen-Activated Protein Kinases/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Phosphorylation/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenograft Model Antitumor Assays , ras Proteins/metabolism
11.
J Pharm Biomed Anal ; 107: 403-8, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25659532

ABSTRACT

A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for GSK2126458, a dual PI3K/mTOR inhibitor, was developed and validated. Plasma and tumor homogenate samples were pre-treated using protein precipitation with acetonitrile containing dabrafenib as internal standard. After dilution with water, the extract was directly injected into the reversed-phase liquid chromatographic system. The eluate was transferred into the electrospray interface with positive ionization and compounds were detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer. The assay was completely validated for plasma in a 4-4000 ng/ml calibration range with r(2)=0.9996±0.0003 using double logarithmic calibration (n=5). Within-run precisions (n=6) were 2.0-5.3% and between-run (3 runs; n=18) precisions 2.7-5.8%. Accuracies were between 101 and 105% for the whole calibration range. The drug was sufficiently stable under all relevant analytical conditions. Finally, the assay was successfully applied to determine plasma and tumor drug levels after oral administration of GSK2126458 to mice with AMC711T neuroblastoma xenografts.


Subject(s)
Neoplasms/chemistry , Phosphoinositide-3 Kinase Inhibitors , Plasma/chemistry , Protein Kinase Inhibitors/blood , Quinolines/blood , Quinolines/chemistry , Sulfonamides/blood , Sulfonamides/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Calibration , Chromatography, Liquid/methods , Female , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridazines , Quinolines/pharmacology , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Sulfonamides/pharmacology , Tandem Mass Spectrometry/methods
12.
Cancer Res ; 73(7): 2189-98, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23378341

ABSTRACT

Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here we identify the forkhead transcription factor FOXO3a as a key target of the PI3K/AKT pathway in neuroblastoma. FOXO3a expression was elevated in low-stage neuroblastoma tumors and normal embryonal neuroblasts, but reduced in late-stage neuroblastoma. Inactivation of FOXO3a by AKT was essential for neuroblastoma cell survival. Treatment of neuroblastoma cells with the dual PI3K/mTOR inhibitor PI-103 activated FOXO3a and triggered apoptosis. This effect was rescued by FOXO3a silencing. Conversely, apoptosis induced by PI-103 or the AKT inhibitor MK-2206 was potentiated by FOXO3a overexpression. Furthermore, levels of total or phosphorylated FOXO3a correlated closely with apoptotic sensitivity to MK-2206. In clinical specimens, there was an inverse relationship between gene expression signatures regulated by PI3K signaling and FOXO3a transcriptional activity. Moreover, high PI3K activity and low FOXO3a activity were each associated with an extremely poor prognosis. Our work indicates that expression of FOXO3a and its targets offer useful prognostic markers as well as biomarkers for PI3K/AKT inhibitor efficacy in neuroblastoma.


Subject(s)
Forkhead Transcription Factors/antagonists & inhibitors , Neuroblastoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Apoptosis/drug effects , Cell Line, Tumor , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Furans/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Prognosis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Survival Rate
13.
BMC Cancer ; 12: 285, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22788920

ABSTRACT

BACKGROUND: Neuroblastoma are pediatric tumors of the sympathetic nervous system with a poor prognosis. Apoptosis is often deregulated in cancer cells, but only a few defects in apoptotic routes have been identified in neuroblastoma. METHODS: Here we investigated genomic aberrations affecting genes of the intrinsic apoptotic pathway in neuroblastoma. We analyzed DNA profiling data (CGH and SNP arrays) and mRNA expression data of 31 genes of the intrinsic apoptotic pathway in a dataset of 88 neuroblastoma tumors using the R2 bioinformatic platform ( http://r2.amc.nl). BIRC6 was selected for further analysis as a tumor driving gene. Knockdown experiments were performed using BIRC6 lentiviral shRNA and phenotype responses were analyzed by Western blot and MTT-assays. In addition, DIABLO levels and interactions were investigated with immunofluorescence and co-immunoprecipitation. RESULTS: We observed frequent gain of the BIRC6 gene on chromosome 2, which resulted in increased mRNA expression. BIRC6 is an inhibitor of apoptosis protein (IAP), that can bind and degrade the cytoplasmic fraction of the pro-apoptotic protein DIABLO. DIABLO mRNA expression was exceptionally high in neuroblastoma but the protein was only detected in the mitochondria. Upon silencing of BIRC6 by shRNA, DIABLO protein levels increased and cells went into apoptosis. Co-immunoprecipitation confirmed direct interaction between DIABLO and BIRC6 in neuroblastoma cell lines. CONCLUSION: Our findings indicate that BIRC6 may have a potential oncogenic role in neuroblastoma by inactivating cytoplasmic DIABLO. BIRC6 inhibition may therefore provide a means for therapeutic intervention in neuroblastoma.


Subject(s)
Inhibitor of Apoptosis Proteins/genetics , Neuroblastoma/genetics , Apoptosis/genetics , Apoptosis Regulatory Proteins , Caspase 9/genetics , Comparative Genomic Hybridization , Cytoplasm/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Inhibitor of Apoptosis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy/methods , Neuroblastoma/metabolism , Polymorphism, Single Nucleotide , RNA, Small Interfering/genetics , Survivin
14.
Eur J Cancer ; 48(16): 3093-103, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22366560

ABSTRACT

Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is strongly elevated compared to normal tissues and other malignancies. Most neuroblastoma cell lines lack this high BCL2 expression. Only two neuroblastoma cell lines (KCNR and SJNB12) show BCL2 expression levels representative for neuroblastoma tumours. To validate BCL2 as a therapeutic target in neuroblastoma we employed lentivirally mediated shRNA. Silencing of BCL2 in KCNR and SJNB12 resulted in massive apoptosis, while cell lines with low BCL2 expression were insensitive. Identical results were obtained by treatment of the neuroblastoma cell lines with the small molecule BCL2 inhibitor ABT263, which is currently being clinically evaluated. Combination assays of ABT263 with most classical cytostatics showed strong synergistic responses. Subcutaneous xenografts of a neuroblastoma cell line with high BCL2 expression in NMRI nu/nu mice showed a strong response to ABT263. These findings establish BCL2 as a promising drug target in neuroblastoma and warrant further evaluation of ABT263 and other BCL2 inhibiting drugs.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , Mice, Nude , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Messenger/metabolism , Time Factors , Transfection , Tumor Burden/drug effects , Up-Regulation , Xenograft Model Antitumor Assays
15.
Nature ; 483(7391): 589-93, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22367537

ABSTRACT

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


Subject(s)
Chromosomes, Human/genetics , Neurites/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Aging/genetics , Cluster Analysis , DNA Helicases/genetics , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Growth Cones/metabolism , Growth Cones/pathology , Guanine Nucleotide Exchange Factors/genetics , Humans , Mutation , Neoplasm Staging , Neuroblastoma/diagnosis , Neuroblastoma/metabolism , Nuclear Proteins/genetics , Prognosis , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , X-linked Nuclear Protein , rac GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism
16.
Genes Chromosomes Cancer ; 51(1): 10-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22034077

ABSTRACT

The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin-CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes that converge on the cell cycle. Neuroblastoma are pediatric tumors that belong to the group of small round blue cell tumors, characterized by a fast proliferation. Here, we present high throughput analyses of cell cycle regulating genes in neuroblastoma. We analyzed a series of 82 neuroblastomas by comparative genomic hybridization arrays, single nucleotide polymorphism arrays, and Affymetrix expression arrays and analyzed the datasets in parallel with the R2 bioinformatic tool (http://r2.amc.nl). About 30% of the tumors had genomic amplifications, gains, or losses with shortest regions of overlap that suggested implication of a series of G1 cell cycle regulating genes. CCND1 (cyclin D1) and CDK4 were amplified or gained and the chromosomal regions containing the CDKN2 (INK4) group of CDKIs were frequently deleted. Cluster analysis showed that tumors with genomic aberrations in G1 regulating genes over-expressed E2F target genes, which regulate S and G2/M phase progression. These tumors have a poor prognosis. Our findings suggest that pharmacological inhibition of cell cycle genes might bear therapeutic promises for patients with high risk neuroblastoma.


Subject(s)
E2F Transcription Factors/metabolism , G1 Phase/genetics , Gene Dosage , Genes, cdc , Neuroblastoma/genetics , Chromosome Aberrations , Cluster Analysis , Cyclin D1/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinases/genetics , Gene Expression , Humans , Neuroblastoma/diagnosis , Prognosis , RNA, Messenger/genetics
17.
Clin Cancer Res ; 16(17): 4353-62, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20719933

ABSTRACT

PURPOSE: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. EXPERIMENTAL DESIGN: The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. RESULTS: ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. CONCLUSIONS: ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.


Subject(s)
Mutation , Neuroblastoma/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Protein-Tyrosine Kinases/genetics , Amino Acid Substitution , Anaplastic Lymphoma Kinase , Animals , Cell Line, Transformed , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Amplification , Gene Expression Profiling , Gene Frequency , Humans , Kaplan-Meier Estimate , N-Myc Proto-Oncogene Protein , Neuroblastoma/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases
18.
Proc Natl Acad Sci U S A ; 106(31): 12968-73, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19525400

ABSTRACT

Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Neuroblastoma/therapy , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase 2/genetics , Gene Amplification , Humans , N-Myc Proto-Oncogene Protein , Neuroblastoma/genetics , Neuroblastoma/pathology , Purines/pharmacology , RNA Interference , Roscovitine , Tumor Suppressor Protein p53/physiology
19.
Retrovirology ; 5: 37, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18439275

ABSTRACT

BACKGROUND: Eradication of HIV-1 from an infected individual cannot be achieved by current drug regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptional silent provirus. However, the molecular mechanisms that permit long-term transcriptional control of proviral gene expression in these cells are still not well understood. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. RESULTS: We set out to develop a new in vitro HIV-1 latency model system using the doxycycline (dox)-inducible HIV-rtTA variant. Stable cell clones were generated with a silent HIV-1 provirus, which can subsequently be activated by dox-addition. Surprisingly, only a minority of the cells was able to induce viral gene expression and a spreading infection, eventhough these experiments were performed with the actively dividing SupT1 T cell line. These latent proviruses are responsive to TNFalpha treatment and alteration of the DNA methylation status with 5-Azacytidine or genistein, but not responsive to the regular T cell activators PMA and IL2. Follow-up experiments in several T cell lines and with wild-type HIV-1 support these findings. CONCLUSION: We describe the development of a new in vitro model for HIV-1 latency and discuss the advantages of this system. The data suggest that HIV-1 proviral latency is not restricted to resting T cells, but rather an intrinsic property of the virus.


Subject(s)
Gene Expression Regulation, Viral , HIV-1/physiology , Proviruses/physiology , T-Lymphocytes/cytology , T-Lymphocytes/virology , Virus Latency/physiology , Cell Division , Cell Line , HIV-1/genetics , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Virus Activation , Virus Latency/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
20.
Nat Biotechnol ; 25(12): 1435-43, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18066040

ABSTRACT

RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid-based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. Although induced RNAi is able to trigger profound and specific inhibition of virus replication, it is becoming clear that RNAi therapeutics are not as straightforward as we had initially hoped. Difficulties concerning toxicity and delivery to the right cells that earlier hampered the development of antisense-based therapeutics may also apply to RNAi. In addition, there are indications that viruses have evolved ways to escape from RNAi. Proper consideration of all of these issues will be necessary in the design of RNAi-based therapeutics for successful clinical intervention of human pathogenic viruses.


Subject(s)
Drug Delivery Systems/methods , Gene Targeting/methods , Genetic Therapy/methods , RNA Interference , Virus Diseases/genetics , Virus Diseases/prevention & control , Viruses/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...