Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Sci Rep ; 14(1): 4517, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402255

ABSTRACT

PURPOSE Cathepsin B (Cat B) is a cysteine lysosomal protease that is upregulated in many inflammatory diseases and widely expressed in the brain. Here, we used a Cat B activatable near-infrared (NIR) imaging probe to measure glial activation in vivo in the formalin test, a standard orofacial inflammatory pain model. The probe's efficacy was quantified with immunohistochemical analysis of the somatosensory cortex. PROCEDURES Three different concentrations of Cat B imaging probe (30, 50, 100 pmol/200 g bodyweight) were injected intracisternally into the foramen magnum of rats under anesthesia. Four hours later formalin (1.5%, 50 µl) was injected into the upper lip and the animal's behaviors recorded for 45 min. Subsequently, animals were repeatedly scanned using the IVIS Spectrum (8, 10, and 28 h post imaging probe injection) to measure extracellular Cat B activity. Aldehyde fixed brain sections were immunostained with antibodies against microglial marker Iba1 or astrocytic GFAP and detected with fluorescently labeled secondary antibodies to quantify co-localization with the fluorescent probe. RESULTS The Cat B imaging probe only slightly altered the formalin test results. Nocifensive behavior was only reduced in phase 1 in the 100 pmol group. In vivo measured fluorescence efficiency was highest in the 100 pmol group 28 h post imaging probe injection. Post-mortem immunohistochemical analysis of the somatosensory cortex detected the greatest amount of NIR fluorescence localized on microglia and astrocytes in the 100 pmol imaging probe group. Sensory neuron neuropeptide and cell injury marker expression in ipsilateral trigeminal ganglia was not altered by the presence of fluorescent probe. CONCLUSIONS These data demonstrate a concentration- and time-dependent visualization of extracellular Cat B in activated glia in the formalin test using a NIR imaging probe. Intracisternal injections are well suited for extracellular CNS proteinase detection in conditions when the blood-brain barrier is intact.


Subject(s)
Cathepsin B , Fluorescent Dyes , Rats , Animals , Cathepsin B/metabolism , Pain Measurement , Fluorescent Dyes/metabolism , Brain/diagnostic imaging , Brain/metabolism , Microglia/metabolism , Facial Pain/metabolism , Formaldehyde/metabolism
2.
J Pain ; 25(2): 428-450, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777035

ABSTRACT

Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.


Subject(s)
Benzamides , Histone Deacetylase Inhibitors , Neuralgia , Animals , Male , Mice , Axons , Epigenesis, Genetic , Histone Deacetylases/metabolism , Nerve Regeneration , Neuralgia/drug therapy , Trigeminal Ganglion/metabolism , Histone Deacetylase Inhibitors/administration & dosage , Benzamides/administration & dosage
3.
J Pain ; 25(2): 302-311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37643657

ABSTRACT

Trigeminal neuralgia is a heterogeneous disorder with likely multifactorial and complex etiology; however, trigeminal nerve demyelination and injury are observed in almost all patients with trigeminal neuralgia. The current management strategies for trigeminal neuralgia primarily involve anticonvulsants and surgical interventions, neither of which directly address demyelination, the pathological hallmark of trigeminal neuralgia, and treatments targeting demyelination are not available. Demyelination of the trigeminal nerve has been historically considered a secondary effect of vascular compression, and as a result, trigeminal neuralgia is not recognized nor treated as a primary demyelinating disorder. In this article, we review the evolution of our understanding of trigeminal neuralgia and provide evidence to propose its potential categorization, at least in some cases, as a primary demyelinating disease by discussing its course and similarities to multiple sclerosis, the most prevalent central nervous system demyelinating disorder. This proposed categorization may provide a basis in investigating novel treatment modalities beyond the current medical and surgical interventions, emphasizing the need for further research into demyelination of the trigeminal sensory pathway in trigeminal neuralgia. PERSPECTIVE: This article proposes trigeminal neuralgia as a demyelinating disease, supported by histological, clinical, and radiological evidence. Such categorization offers a plausible explanation for controversies surrounding trigeminal neuralgia. This perspective holds potential for future research and developing therapeutics targeting demyelination in the condition.


Subject(s)
Multiple Sclerosis , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/etiology , Trigeminal Neuralgia/therapy , Trigeminal Nerve/pathology , Trigeminal Nerve/surgery , Multiple Sclerosis/complications
4.
J Pain ; : 104451, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38154622

ABSTRACT

Human induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) and human dorsal root ganglia neurons (hDRG-N) are popular tools in the field of pain research; however, few groups make use of both approaches. For screening and analgesic validation purposes, important characterizations can be determined of the similarities and differences between hDRG-N and hiPSC-SNs. This study focuses specifically on the electrophysiology properties of hDRG-N in comparison to hiPSC-SNs. We also compared hDRG-N and hiPSC-SNs from both male and female donors to evaluate potential sex differences. We recorded neuronal size, rheobase, resting membrane potential, input resistance, and action potential waveform properties from 83 hiPSCs-SNs (2 donors) and 108 hDRG-N neurons (8 donors). We observed several statistically significant electrophysiological differences between hDRG-N and hiPSC-SNs, such as size, rheobase, input resistance, and several action potential waveform properties. Correlation analysis also revealed many properties that were positively or negatively correlated, some of which were differentially correlated between hDRG-N and hiPSC-SNs. This study shows several differences between hDRG-N and hiPSC-SNs and allows a better understanding of the advantages and disadvantages of both for use in pain research. We hope this study will be a valuable resource for pain researchers considering the use of these human in vitro systems for mechanistic studies and/or drug development projects. PERSPECTIVE: hiPSC-SNs and hDRG-N are popular tools in the field of pain research. This study allows for a better functional understanding of the pros and cons of both tools.

5.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961669

ABSTRACT

Human induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) and human dorsal root ganglia (hDRG) neurons are popular tools in the field of pain research; however, few groups make use of both approaches. For screening and analgesic validation purposes, important characterizations can be determined of the similarities and differences between hDRG and hiPSC-SNs. This study focuses specifically on electrophysiology properties of hDRG in comparison to hiPSC-SNs. We also compared hDRG and hiPSC-SNs from both male and female donors to evaluate potential sex differences. We recorded neuronal size, rheobase, resting membrane potential, input resistance, and action potential waveform properties from 83 hiPSCs-SNs (2 donors) and 108 hDRG neurons (9 donors). We observed several statistically significant electrophysiological differences between hDRG and hiPSC-SNs, such as size, rheobase, input resistance, and several actional potential (AP) waveform properties. Correlation analysis also revealed many properties that were positively or negatively correlated, some of which were differentially correlated between hDRG and hiPSC-SNs. This study shows several differences between hDRG and hiPSC-SNs and allows better understanding of the advantages and disadvantages of both for use in pain research. We hope this study will be a valuable resource for pain researchers considering the use of these human in vitro systems for mechanistic studies and/or drug development projects.

6.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686003

ABSTRACT

The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.


Subject(s)
N-Methylaspartate , Nociception , Humans , Cell Nucleus , Excitatory Amino Acid Agonists , Pain , Receptors, N-Methyl-D-Aspartate/genetics
7.
J Vis Exp ; (199)2023 09 01.
Article in English | MEDLINE | ID: mdl-37677033

ABSTRACT

A model of persisting lower back pain can be induced in mice with the simple methodology described herein. Step-by-step methods for simple, rapid induction of a persisting back pain model in mice are provided here using an injection of urokinase-type plasminogen activator (urokinase), a serine protease present in humans and other animals. The methodology for induction of persisting lower back pain in mice involves a simple injection of urokinase along the ligamentous insertion region of the lumbar spine. The urokinase inflammatory agent activates plasminogen to plasmin. Typically, the model can be induced within 10 min and hypersensitivity persists for at least 8 weeks. Hypersensitivity, gait disturbance, and other standard anxiety- and depression-like measures can be tested in the persisting model. Back pain is the most prevalent type of pain. To improve awareness of back pain, the International Association for the Study of Pain (IASP) named 2021 the "Global Year about Back Pain" and 2022 the "Global Year for Translating Pain Knowledge to Practice." One limitation of the therapeutic advancement of pain therapeutics is the lack of suitable models for testing persistent and chronic pain. The features of this model are suitable for testing potential therapeutics aimed at the reduction of back pain and its ancillary characteristics, contributing to IASP's naming 2022 as the Global Year for Translating Pain Knowledge to Practice.


Subject(s)
Chronic Pain , Hypersensitivity , Low Back Pain , Humans , Animals , Mice , Urokinase-Type Plasminogen Activator , Back Pain , Serine Proteases , Disease Models, Animal
8.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446213

ABSTRACT

A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.


Subject(s)
Chronic Pain , Neuralgia , Single-Chain Antibodies , Animals , Mice , Molecular Docking Simulation , Peptide Library , Receptor, Cholecystokinin B , Chronic Pain/therapy , Ribosomes/metabolism
9.
Mol Pain ; 19: 17448069231186592, 2023.
Article in English | MEDLINE | ID: mdl-37351900

ABSTRACT

Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.


Subject(s)
Chronic Pain , Neuropeptides , Mice , Animals , Dynorphins , Ganglia, Spinal
10.
Neuropharmacology ; 218: 109233, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36007855

ABSTRACT

Chemotherapy-induced neuropathic pain (CINP) is a debilitating and difficult-to-treat side effect of chemotherapeutic drugs. CINP is marked with oxidative stress and neuronal hypersensitivities. The peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates genes involved in oxidative stress and inflammation. We hypothesize that PPARγ agonists are protective against CIPN by reducing oxidative stress and inhibiting neuronal hypersensitivities. To test our hypothesis, acute or chronic CIPN was introduced by short or long-term treatment of oxaliplatin in BALB/c mice. CIPN mice were treated with either a novel blood-brain barrier (BBB) penetrable PPARγ agonist ELB00824, or a BBB non-penetrable PPARγ agonist pioglitazone, or vehicle. Cold allodynia, mechanical allodynia, motor coordination, sedation and addiction were measured with dry ice, von Frey filaments, beam-walking tests, and conditioned place preference, respectively. Oxidative stress was accessed by measuring byproducts of protein oxidation (carbonyl and 3-Nitrotyrosine) and lipid peroxidation [Thiobarbituric acid reactive substances (TBARS)], as wells as gene expression of Cat, Sod2, Ppargc1a. The effects of ELB00824 on nociceptor excitability were measured using whole-cell electrophysiology of isolated dorsal root ganglion neurons. Preemptive ELB00824, but not pioglitazone, reduced oxaliplatin-induced cold and mechanical allodynia and oxidative stress. ELB0824 suppressed oxaliplatin-induced firing in IB4- neurons. ELB00824 did not cause motor discoordination or sedation/addiction or reduce the antineoplastic activity of oxaliplatin (measured with an MTS-based cell proliferation assay) in a human colon cancer cell line (HCT116) and a human oral cancer cell line (HSC-3). Our results demonstrated that ELB00824 prevents oxaliplatin-induced pain, likely via inhibiting neuronal hypersensitivities and oxidative stress.


Subject(s)
Antineoplastic Agents , Hypersensitivity , Neuralgia , Animals , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Hypersensitivity/drug therapy , Mice , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/prevention & control , Neurons/metabolism , Oxaliplatin , Oxidative Stress , PPAR gamma/metabolism
11.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34948407

ABSTRACT

Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.


Subject(s)
Chronic Pain/drug therapy , Purinergic P2X Receptor Antagonists/therapeutic use , Single-Chain Antibodies/therapeutic use , Animals , Antibody Affinity , Cells, Cultured , Chronic Pain/immunology , Female , Male , Mice , Peptide Library , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/immunology , Receptors, Purinergic P2X4/chemistry , Receptors, Purinergic P2X4/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology
12.
World J Gastroenterol ; 27(9): 794-814, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33727771

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis. The validated caerulein- (CAE) induced mouse model of acute/recurring AP produces secondary persistent hypersensitivity and anxiety-like behavioral changes for study. AIM: To determine efficacy of acetyl-L-carnitine (ALC) to reduce pain-related behaviors and brain microglial activation along the pain circuitry in CAE-pancreatitis. METHODS: Pancreatitis was induced with 6 hly intraperitoneal (i.p.) injections of CAE (50 µg/kg), 3 d a week for 6 wk in male C57BL/6J mice. Starting in week 4, mice received either vehicle or ALC until experiment's end. Mechanical hyper-sensitivity was assessed with von Frey filaments. Heat hypersensitivity was determined with the hotplate test. Anxiety-like behavior was tested in week 6 using elevated plus maze and open field tests. Microglial activation in brain was quantified histologically by immunostaining for ionized calcium-binding adaptor molecule 1 (Iba1). RESULTS: Mice with CAE-induced pancreatitis had significantly reduced mechanical withdrawal thresholds and heat response latencies, indicating ongoing pain. Treatment with ALC attenuated inflammation-induced hypersensitivity, but hypersensitivity due to abdominal wall injury caused by repeated intraperitoneal injections persisted. Animals with pancreatitis displayed spontaneous anxiety-like behavior in the elevated plus maze compared to controls. Treatment with ALC resulted in increased numbers of rearing activity events, but time spent in "safety" was not changed. After all the abdominal injections, pancreata were translucent if excised at experiment's end and opaque if excised on the subsequent day, indicative of spontaneous healing. Post mortem histopathological analysis performed on pancreas sections stained with Sirius Red and Fast Green identified wide-spread fibrosis and acinar cell atrophy in sections from mice with CAE-induced pancreatitis that was not rescued by treatment with ALC. Microglial Iba1 immunostaining was significantly increased in hippocampus, thalamus (intralaminar nuclei), hypothalamus, and amygdala of mice with CAE-induced pancreatitis compared to naïve controls but unchanged in the primary somatosensory cortex compared to naïves. CONCLUSION: CAE-induced pancreatitis caused increased pain-related behaviors, pancreatic fibrosis, and brain microglial changes. ALC alleviated CAE-induced mechanical and heat hypersensitivity but not abdominal wall injury-induced hypersensitivity caused by the repeated injections.


Subject(s)
Ceruletide , Pancreatitis , Acetylcarnitine , Acute Disease , Animals , Brain , Ceruletide/toxicity , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Microglia , Pain , Pancreas , Pancreatitis/chemically induced , Pancreatitis/drug therapy
13.
Channels (Austin) ; 15(1): 31-37, 2021 12.
Article in English | MEDLINE | ID: mdl-33283622

ABSTRACT

In this brief report, we demonstrate that the Cav3.3 T-type voltage-gated calcium channel subtype is involved in our FRICT-ION model of chronic trigeminal neuropathic pain. We first showed that the Cacna1i gene encoding Cav3.3 is significantly upregulated in whole trigeminal ganglia of FRICT-ION mice compared to controls at week 10 post-injury. We confirmed protein upregulation of Cav3.3 compared to controls using Western blot analysis of whole trigeminal ganglia tissues. Finally, we demonstrated that intraperitoneal injection of a selective TAT-based Cav3.3 blocking peptide in FRICT-ION mice significantly reduces Cav3.3 protein expression at the peak anti-allodynic effect (4 hrs post-injection) of the attenuated neuropathic pain behavior. We also suggest that blockade of Cav3.3 may be more effective in attenuating trigeminal neuropathic pain in female than male FRICT-ION mice. Therefore, blocking or attenuating Cav3.3 function may be an effective strategy for the treatment of trigeminal neuropathic pain.


Subject(s)
Calcium Channels, T-Type , Animals , Ganglia, Spinal , Hyperalgesia , Mice , Up-Regulation
14.
Neuroimage ; 223: 117343, 2020 12.
Article in English | MEDLINE | ID: mdl-32898676

ABSTRACT

Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.


Subject(s)
Anxiety/physiopathology , Brain/physiopathology , Neuralgia/physiopathology , Animals , Anxiety/etiology , Brain Mapping/methods , Contrast Media , Magnetic Resonance Imaging/methods , Male , Manganese , Neural Pathways/physiopathology , Neuralgia/complications , Rats, Sprague-Dawley
15.
Front Physiol ; 11: 440, 2020.
Article in English | MEDLINE | ID: mdl-32536874

ABSTRACT

In the lumbar spinal cord dorsal horn, release of afferent nerve glutamate activates the neurons that relay information about injury pain. Here, we examined the effects of protein tyrosine kinase (PTK) inhibition on NMDA receptor NR1 subunit protein expression and subcellular localization in an acute experimental arthritis model. PTK inhibitors genistein and lavendustin A reduced cellular histological translocation of NMDA NR1 in the spinal cord occurring after the inflammatory insult and the nociceptive behavioral responses to heat. The PTK inhibitors were administered into lumbar spinal cord by microdialysis, and secondary heat hyperalgesia was determined using the Hargreaves test. NMDA NR1 cellular protein expression and nuclear translocation were determined by immunocytochemical localization with light and electron microscopy, as well as with Western blot analysis utilizing both C- and N-terminal antibodies. Genistein and lavendustin A (but not inactive lavendustin B or diadzein) effectively reduced (i) pain related behavior, (ii) NMDA NR1 subunit expression increases in spinal cord, and (iii) the shift of NR1 from a cell membrane to a nuclear localization. Genistein pre-treatment reduced these events that occur in vivo within 4 h after inflammatory insult to the knee joint with kaolin and carrageenan (k/c). Cycloheximide reduced glutamate activated upregulation of NR1 content confirming synthesis of new protein in response to the inflammatory insult. In addition to this in vivo data, genistein or staurosporin inhibited upregulation of NMDA NR1 protein and nuclear translocation in vitro after treatment of human neuroblastoma clonal cell cultures (SH-SY5Y) with glutamate or NMDA (4 h). These studies provide evidence that inflammatory activation of peripheral nerves initiates increase in NMDA NR1 in the spinal cord coincident with development of pain related behaviors through glutamate non-receptor, PTK dependent cascades.

16.
Life (Basel) ; 10(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443500

ABSTRACT

BACKGROUND: Few models exist that can control for placebo and expectancy effects commonly observed in clinical trials measuring 'Cannabis' pharmacodynamics. We used the Foramen Rotundum Inflammatory Constriction Trigeminal Infraorbital Nerve injury (FRICT-ION) model to measure the effect of "full-spectrum" whole plant extracted hemp oil on chronic neuropathic pain sensitivity in mice. METHODS: Male BALBc mice were submitted to the FRICT-ION chronic neuropathic pain model with oral insertion through an incision in the buccal/cheek crease of 3 mm of chromic gut suture (4-0). The suture, wedged along the V2 trigeminal nerve branch, creates a continuous irritation that develops into secondary mechanical hypersensitivity on the snout. Von Frey filament stimuli on the mouse whisker pad was used to assess the mechanical pain threshold from 0-6 h following dosing among animals (n = 6) exposed to 5 µL of whole plant extracted hemp oil combined with a peanut butter vehicle (0.138 mg/kg), the vehicle alone (n = 3) 7 weeks post-surgery, or a naïve control condition (n = 3). RESULTS: Mechanical allodynia was alleviated within 1 h (d = 2.50, p < 0.001) with a peak reversal effect at 4 h (d = 7.21, p < 0.001) and remained significant throughout the 6 h observation window. There was no threshold change on contralateral whisker pad after hemp oil administration, demonstrating the localization of anesthetic response to affected areas. CONCLUSION: Future research should focus on how whole plant extracted hemp oil affects multi-sensory and cognitive-attentional systems that process pain.

17.
Molecules ; 25(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138198

ABSTRACT

Effective, non-addictive therapeutics for chronic pain remain a critical need. While there are several potential therapeutics that stimulate anti-inflammatory mechanisms to restore homeostasis in the spinal dorsal horn microenvironment, the effectiveness of drugs for neuropathic pain are still inadequate. The convergence of increasing knowledge about the multi-factorial mechanisms underlying neuropathic pain and the mechanisms of drug action from preclinical studies are providing the ability to create pharmaceuticals with better clinical effectiveness. By targeting and activating the peroxisome proliferator-activated receptor gamma subunit (PPARγ), numerous preclinical studies report pleiotropic effects of thiazolidinediones (TDZ) beyond their intended use of increasing insulin, including their anti-inflammatory, renal, cardioprotective, and oncopreventative effects. Several studies find TDZs reduce pain-related behavioral symptoms, including ongoing secondary hypersensitivity driven by central sensitization. Previous studies find increased PPARγ in the spinal cord and brain regions innervated by incoming afferent nerve endings after the induction of neuropathic pain models. PPARγ agonist treatment provides an effective reduction in pain-related behaviors, including anxiety. Data further suggest that improved brain mitochondrial bioenergetics after PPARγ agonist treatment is a key mechanism for reducing hypersensitivity. This review emphasizes two points relevant for the development of better chronic pain therapies. First, employing neuropathic pain models with chronic duration is critical since they can encompass the continuum of molecular and brain circuitry alterations arising over time when pain persists, providing greater relevance to clinical pain syndromes. Assisting in that effort are preclinical models of chronic trigeminal pain syndromes. Secondly, considering the access to nerve and brain neurons and glia across the blood-brain barrier is important. While many therapies have low brain penetrance, a PPARγ agonist with better brain penetrance, ELB00824, has been developed. Purposeful design and recent comparative testing indicate that ELB00824 is extraordinarily efficient and efficacious. ELB00824 provides greatly improved attenuation of pain-related behaviors, including mechanical hypersensitivity, anxiety, and depression in our chronic trigeminal nerve injury models. Physiochemical properties allowing significant brain access and toxicity testing are discussed.


Subject(s)
Neuralgia/drug therapy , Neuralgia/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Animals , Humans , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Mice , Pioglitazone/therapeutic use , Rats , Rosiglitazone/therapeutic use , Thiazolidinediones/therapeutic use
18.
Bio Protoc ; 10(8): e3591, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-33659557

ABSTRACT

An easily induced preclinical trigeminal neuropathic nerve injury model is described here for the study of chronic pain, the model acronym FRICT-ION (Foramen Rotundum Inflammatory Constriction Trigeminal InfraOrbital Nerve). In patients, neuropathic pain is thought to be related to vascular alignment or multiple sclerosis along this small trigeminal nerve branch (V2) innervating the maxillary teeth and middle third of the face. With no detectable outward physical signs, the FRICT-ION model is ideal for blinded studies. The acronym FRICT-ION applied relates to the persistence of the trigeminal neuropathic pain model likely due to sliding irritation with normal chewing in the mice. A step-by-step method to induce the mild chronic rodent neuropathic pain model is described here. The surgery is performed orally through a tiny surgical slit inside the cheek crease to align a chromic gut suture irritant along the nerve as it passes into the skull. The model allows testing of non-evoked subjective measures and evoked quantitative mechanical hypersensitivity (allodynia) testing with von Frey filaments through at least 10-14 weeks (100 days). Anxiety and depression behaviors develop within 3-6 weeks relevant to the affective component of chronic pain. While many pain drugs have failed based on testing performed in the acute animal models available, the more stable and easily replicated trigeminal inflammatory compression model is the better suited for understanding both mechanistic and affective components of nerve injury-induced chronic neuropathic pain states as well as the more ideal for preclinical trials of novel non-opioid pain relief therapies.

20.
Mol Pain ; 14: 1744806918796763, 2018.
Article in English | MEDLINE | ID: mdl-30178698

ABSTRACT

Chronic orofacial pain is a significant health problem requiring identification of regulating processes. Involvement of epigenetic modifications that is reported for hindlimb neuropathic pain experimental models, however, is less well studied in cranial nerve pain models. Three independent observations reported here are the (1) epigenetic profile in mouse trigeminal ganglia (TG) after trigeminal inflammatory compression (TIC) nerve injury mouse model determined by gene expression microarray, (2) H3K9 acetylation pattern in TG by immunohistochemistry, and (3) efficacy of histone deacetylase (HDAC) inhibitors to attenuate development of hypersensitivity. After TIC injury, ipsilateral whisker pad mechanical sensitization develops by day 3 and persists well beyond day 21 in contrast to sham surgery. Global acetylation of H3K9 decreases at day 21 in ipsilateral TG . Thirty-four genes are significantly ( p < 0.05) overexpressed in the ipsilateral TG by at least two-fold at either 3 or 21 days post-trigeminal inflammatory compression injury. The three genes most overexpressed three days post-trigeminal inflammatory compression nerve injury are nerve regeneration-associated gene ATF3, up 6.8-fold, and two of its regeneration-associated gene effector genes, Sprr1a and Gal, up 174- and 25-fold, respectively. Although transcription levels of 25 of 32 genes significantly overexpressed three days post-trigeminal inflammatory compression return to constitutive levels by day 21, these three regeneration-associated genes remain significantly overexpressed at the later time point. On day 21, when tissues are healed, other differentially expressed genes include 39 of the top 50 upregulated and downregulated genes. Remarkably, preemptive manipulation of gene expression with two HDAC inhibitors (HDACi's), suberanilohydroxamic acid (SAHA) and MS-275, reduces the magnitude and duration of whisker pad mechanical hypersensitivity and prevents the development of a persistent pain state. These findings suggest that trigeminal nerve injury leads to epigenetic modifications favoring overexpression of genes involved in nerve regeneration and that maintaining transcriptional homeostasis with epigenetic modifying drugs could help prevent the development of persistent pain.


Subject(s)
Facial Pain/complications , Gene Expression Regulation/physiology , Histone Deacetylase Inhibitors/therapeutic use , Hyperalgesia/etiology , Hyperalgesia/prevention & control , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Benzamides/therapeutic use , Cornified Envelope Proline-Rich Proteins/genetics , Cornified Envelope Proline-Rich Proteins/metabolism , Disease Models, Animal , Facial Pain/etiology , Facial Pain/pathology , Functional Laterality , Ganglia, Spinal/pathology , Gene Expression Regulation/drug effects , Histone Deacetylases/metabolism , Male , Mice , Mice, Inbred BALB C , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nylons , Pain Threshold/drug effects , Physical Stimulation/adverse effects , Pyridines/therapeutic use , Pyrroles/therapeutic use , Trigeminal Nerve Injuries/complications , Vibrissae/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...