Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nutrients ; 16(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257177

ABSTRACT

Obesity is a pediatric epidemic that is more prevalent in children with developmental disabilities. We hypothesize that soy protein-based diets increase weight gain and alter neurobehavioral outcomes. Our objective herein was to test matched casein- and soy protein-based purified ingredient diets in a mouse model of fragile X syndrome, Fmr1KO mice. The experimental methods included assessment of growth; 24-7 activity levels; motor coordination; learning and memory; blood-based amino acid, phytoestrogen and glucose levels; and organ weights. The primary outcome measure was body weight. We find increased body weight in male Fmr1KO from postnatal day 6 (P6) to P224, male wild type (WT) from P32-P39, female Fmr1KO from P6-P18 and P168-P224, and female Fmr1HET from P9-P18 as a function of soy. Activity at the beginning of the light and dark cycles increased in female Fmr1HET and Fmr1KO mice fed soy. We did not find significant differences in rotarod or passive avoidance behavior as a function of genotype or diet. Several blood-based amino acids and phytoestrogens were significantly altered in response to soy. Liver weight was increased in WT and adipose tissue in Fmr1KO mice fed soy. Activity levels at the beginning of the light cycle and testes weight were greater in Fmr1KO versus WT males irrespective of diet. DEXA analysis at 8-months-old indicated increased fat mass and total body area in Fmr1KO females and lean mass and bone mineral density in Fmr1KO males fed soy. Overall, dietary consumption of soy protein isolate by C57BL/6J mice caused increased growth, which could be attributed to increased lean mass in males and fat mass in females. There were sex-specific differences with more pronounced effects in Fmr1KO versus WT and in males versus females.


Subject(s)
Ketones , Soybean Proteins , Humans , Child , Animals , Mice , Female , Male , Infant , Mice, Inbred C57BL , Soybean Proteins/pharmacology , Phenotype , Genotype , Obesity , Fragile X Mental Retardation Protein/genetics
2.
ACS Chem Neurosci ; 15(1): 119-133, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38109073

ABSTRACT

Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism, is caused by the transcriptional silencing of the FMR1 gene, which encodes the fragile X messenger ribonucleoprotein (FMRP). FMRP interacts with numerous brain mRNAs that are involved in synaptic plasticity and implicated in autism spectrum disorders. Our published studies indicate that single-source, soy-based diets are associated with increased seizures and autism. Thus, there is an acute need for an unbiased protein marker identification in FXS in response to soy consumption. Herein, we present a spatial proteomics approach integrating mass spectrometry imaging with label-free proteomics in the FXS mouse model to map the spatial distribution and quantify levels of proteins in the hippocampus and hypothalamus brain regions. In total, 1250 unique peptides were spatially resolved, demonstrating the diverse array of peptidomes present in the tissue slices and the broad coverage of the strategy. A group of proteins that are known to be involved in glycolysis, synaptic transmission, and coexpression network analysis suggest a significant association between soy proteins and metabolic and synaptic processes in the Fmr1KO brain. Ultimately, this spatial proteomics work represents a crucial step toward identifying potential candidate protein markers and novel therapeutic targets for FXS.


Subject(s)
Fragile X Syndrome , Soybean Proteins , Mice , Animals , Soybean Proteins/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fragile X Syndrome/metabolism , Proteomics , Mice, Knockout , Disease Models, Animal
3.
Int Rev Neurobiol ; 173: 141-170, 2023.
Article in English | MEDLINE | ID: mdl-37993176

ABSTRACT

Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.


Subject(s)
Autism Spectrum Disorder , Exposome , Fragile X Syndrome , Infant , Humans , Animals , Mice , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/diagnosis , Phenotype
4.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833907

ABSTRACT

Nearly half of children with fragile X syndrome experience sleep problems including trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep-wake cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity. Electroencephalography (EEG) results were compared with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep-wake patterns in adult wild type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep-wake patterns similar to wild type littermates when maintained on a control purified ingredient diet. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes (number and length of sleep and wake bouts) supported the altered sleep states in response to a ketogenic diet and were correlated with altered rest-activity cycles. While actigraphy may be a less expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did not correlate with EEG sleep states.


Subject(s)
Diet, Ketogenic , Humans , Child , Animals , Mice , Mice, Inbred C57BL , Sleep/physiology , Wakefulness/physiology , Electroencephalography , Mice, Knockout , Fragile X Mental Retardation Protein/genetics
5.
Animals (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36552368

ABSTRACT

Animal husbandry conditions, including rodent diet, constitute an example highlighting the importance of reporting experimental variables to enhance scientific rigor. In the present study, we examine the effects of three common rodent diets including two chows (Purina 5015 and Teklad 2019) and one purified ingredient diet (AIN-76A) on growth anthropometrics (body weight), behavior (nest building, actigraphy, passive avoidance) and blood biomarkers (ketones, glucose, amino acid profiles) in male and female C57BL/6J mice. We find increased body weight in response to the chows compared to purified ingredient diet albeit selectively in male mice. We did not find significantly altered behavior in female or male wild type C57BL/6J mice. However, amino acid profiles changed as an effect of sex and diet. These data contribute to a growing body of knowledge indicating that rodent diet impacts experimental outcomes and needs to be considered in study design and reporting.

7.
Cells ; 11(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35456030

ABSTRACT

Mice fed soy-based diets exhibit increased weight gain compared to mice fed casein-based diets, and the effects are more pronounced in a model of fragile X syndrome (FXS; Fmr1KO). FXS is a neurodevelopmental disability characterized by intellectual impairment, seizures, autistic behavior, anxiety, and obesity. Here, we analyzed body weight as a function of mouse age, diet, and genotype to determine the effect of diet (soy, casein, and grain-based) on weight gain. We also assessed plasma protein biomarker expression and behavior in response to diet. Juvenile Fmr1KO mice fed a soy protein-based rodent chow throughout gestation and postnatal development exhibit increased weight gain compared to mice fed a casein-based purified ingredient diet or grain-based, low phytoestrogen chow. Adolescent and adult Fmr1KO mice fed a soy-based infant formula diet exhibited increased weight gain compared to reference diets. Increased body mass was due to increased lean mass. Wild-type male mice fed soy-based infant formula exhibited increased learning in a passive avoidance paradigm, and Fmr1KO male mice had a deficit in nest building. Thus, at the systems level, consumption of soy-based diets increases weight gain and affects behavior. At the molecular level, a soy-based infant formula diet was associated with altered expression of numerous plasma proteins, including the adipose hormone leptin and the ß-amyloid degrading enzyme neprilysin. In conclusion, single-source, soy-based diets may contribute to the development of obesity and the exacerbation of neurological phenotypes in developmental disabilities, such as FXS.


Subject(s)
Autistic Disorder , Fragile X Syndrome , Adolescent , Animals , Caseins/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Humans , Infant Formula , Male , Mice , Obesity , Weight Gain
8.
Front Neurosci ; 16: 1031016, 2022.
Article in English | MEDLINE | ID: mdl-37492195

ABSTRACT

Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs. In this review article, we summarize the main findings of nutritional studies in ASDs, with an emphasis on the most common monogenic cause of autism, Fragile X Syndrome (FXS), and the most studied dietary intervention, the ketogenic diet as well as other dietary interventions. We also discuss the gut microbiota in relation to pre- and probiotic therapies and provide insight into future directions that could aid in understanding the mechanism(s) underlying dietary efficacy.

9.
Front Mol Neurosci ; 14: 751307, 2021.
Article in English | MEDLINE | ID: mdl-34690696

ABSTRACT

Glycogen synthase kinase 3 (GSK3) is a proline-directed serine-threonine kinase that is associated with several neurological disorders, including Alzheimer's disease and fragile X syndrome (FXS). We tested the efficacy of a novel GSK3 inhibitor AFC03127, which was developed by Angelini Pharma, in comparison to the metabotropic glutamate receptor 5 inhibitor 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the GSK3 inhibitor SB216763 in in vivo and in vitro assays in Fmr1 KO mice, a mouse model useful for the study of FXS. The in vivo assay tested susceptibility to audiogenic-induced seizures (AGS) whereas the in vitro assays assessed biomarker expression and dendritic spine length and density in cultured primary neurons as a function of drug dose. MPEP and SB216763 attenuated AGS in Fmr1 KO mice, whereas AFC03127 did not. MPEP and AFC03127 significantly reduced dendritic expression of amyloid-beta protein precursor (APP). All drugs rescued spine length and the ratio of mature dendritic spines. Spine density was not statistically different between vehicle and GSK3 inhibitor-treated cells. The drugs were tested over a wide concentration range in the in vitro assays to determine dose responses. A bell-shaped dose response decrease in APP expression was observed in response to AFC03127, which was more effective than SB216763. These findings confirm previous studies demonstrating differential effects of various GSK3 inhibitors on AGS propensity in Fmr1 KO mice and confirm APP as a downstream biomarker that is responsive to GSK3 activity.

10.
Nutrients ; 13(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34445048

ABSTRACT

This study evaluates the prevalence of autistic behaviors in fragile X syndrome as a function of infant diet. Retrospective survey data from the Fragile X Syndrome Nutrition Study, which included data on infant feeding and caregiver-reported developmental milestones for 190 children with fragile X syndrome enrolled in the Fragile X Online Registry with Accessible Database (FORWARD), were analyzed. Exploratory, sex-specific associations were found linking the use of soy-based infant formula with worse autistic behaviors related to language in females and self-injurious behavior in males. These findings prompt prospective evaluation of the effects of soy-based infant formula on disease comorbidities in fragile X syndrome, a rare disorder for which newborn screening could be implemented if there was an intervention. Gastrointestinal problems were the most common reason cited for switching to soy-based infant formula. Thus, these findings also support the study of early gastrointestinal problems in fragile X syndrome, which may underly the development and severity of disease comorbidities. In conjunction with comorbidity data from the previous analyses of the Fragile X Syndrome Nutrition Study, the findings indicate that premutation fragile X mothers should be encouraged to breastfeed.


Subject(s)
Autism Spectrum Disorder/epidemiology , Feeding Behavior/psychology , Fragile X Syndrome/psychology , Infant Formula/statistics & numerical data , Infant Nutritional Physiological Phenomena/genetics , Adolescent , Autism Spectrum Disorder/genetics , Comorbidity , Female , Fragile X Syndrome/physiopathology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/genetics , Humans , Infant , Male , Nutrition Surveys , Parents , Prevalence , Retrospective Studies
12.
Nutrients ; 13(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073785

ABSTRACT

Breastfeeding is associated with numerous health benefits, but early life nutrition has not been specifically studied in the neurodevelopmental disorder fragile X syndrome (FXS). Herein, I evaluate associations between the consumption of breast milk during infancy and the prevalence of autism, allergies, diabetes, gastrointestinal (GI) problems and seizures in FXS. The study design was a retrospective survey of families enrolled in the Fragile X Online Registry and Accessible Research Database (FORWARD). There was a 1.7-fold reduction in the prevalence of autism in FXS participants who were fed breast milk for 12 months or longer. There were strong negative correlations between increased time the infant was fed breast milk and the prevalence of autism and seizures and moderate negative correlations with the prevalence of GI problems and allergies. However, participants reporting GI problems or allergies commenced these comorbidities significantly earlier than those not fed breast milk. Parsing the data by sex indicated that males exclusively fed breast milk exhibited decreased prevalence of GI problems and allergies. These data suggest that long-term or exclusive use of breast milk is associated with reduced prevalence of key comorbidities in FXS, although breast milk is associated with the earlier development of GI problems and allergies.


Subject(s)
Autism Spectrum Disorder/epidemiology , Fragile X Syndrome/epidemiology , Milk, Human , Autistic Disorder/epidemiology , Breast Feeding/statistics & numerical data , Diabetes Mellitus/epidemiology , Female , Gastrointestinal Diseases/epidemiology , Humans , Hypersensitivity/epidemiology , Infant , Male , Nutritional Status , Prevalence , Retrospective Studies , Seizures/epidemiology , Surveys and Questionnaires
13.
Nutrients ; 13(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809037

ABSTRACT

This Special Issue for Nutrients focuses on the effects of diet on brain function with a special emphasis on epileptic disorders [...].


Subject(s)
Epilepsy/diet therapy , Humans
15.
Nutrients ; 12(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066511

ABSTRACT

A large number of adults and children consume soy in various forms, but little information is available regarding potential neurological side effects. Prior work indicates an association between the consumption of soy-based diets and seizure prevalence in mouse models of neurological disease and in children with autism. Herein, we sought to evaluate potential associations between the consumption of soy-based formula during infancy and disease comorbidities in persons with fragile X syndrome (FXS), while controlling for potentially confounding issues, through a retrospective case-control survey study of participants with FXS enrolled in the Fragile X Online Registry with Accessible Research Database (FORWARD). There was a 25% usage rate of soy-based infant formula in the study population. We found significant associations between the consumption of soy-based infant formula and the comorbidity of autism, gastrointestinal problems (GI) and allergies. Specifically, there was a 1.5-fold higher prevalence of autism, 1.9-fold GI problems and 1.7-fold allergies in participants reporting the use of soy-based infant formula. The major reason for starting soy-based infant formula was GI problems. The average age of seizure and allergy onset occurred long after the use of soy-based infant formula. We conclude that early-life feeding with soy-based infant formula is associated with the development of several disease comorbidities in FXS.


Subject(s)
Autistic Disorder/etiology , Food, Formulated/adverse effects , Fragile X Syndrome , Gastrointestinal Diseases/etiology , Glycine max/adverse effects , Hypersensitivity/etiology , Infant Formula/adverse effects , Infant Nutritional Physiological Phenomena/physiology , Seizures/etiology , Autistic Disorder/epidemiology , Case-Control Studies , Comorbidity , Female , Fragile X Syndrome/epidemiology , Gastrointestinal Diseases/epidemiology , Humans , Hypersensitivity/epidemiology , Infant , Male , Prevalence , Registries , Retrospective Studies , Seizures/epidemiology , Surveys and Questionnaires
16.
Front Cell Dev Biol ; 8: 856, 2020.
Article in English | MEDLINE | ID: mdl-32984339

ABSTRACT

The COVID-19 pandemic is a global health crisis that requires the application of interdisciplinary research to address numerous knowledge gaps including molecular strategies to prevent viral reproduction in affected individuals. In response to the Frontiers Research Topic, "Coronavirus disease (COVID-19): Pathophysiology, Epidemiology, Clinical Management, and Public Health Response," this Hypothesis article proposes a novel therapeutic strategy to repurpose metabotropic glutamate 5 receptor (mGluR5) inhibitors to interfere with viral hijacking of the host protein synthesis machinery. We review pertinent background on SARS-CoV-2, fragile X syndrome (FXS) and metabotropic glutamate receptor 5 (mGluR5) and provide a mechanistic-based hypothesis and preliminary data to support testing mGluR5 inhibitors in COVID-19 research.

17.
Sci Rep ; 10(1): 10781, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612155

ABSTRACT

Fragile X mental retardation protein (FMRP) binds to and regulates the translation of amyloid-ß protein precursor (App) mRNA, but the detailed mechanism remains to be determined. Differential methylation of App mRNA could underlie FMRP binding, message localization and translation efficiency. We sought to determine the role of FMRP and N6-methyladeonsine (m6A) on nuclear export of App mRNA. We utilized the m6A dataset by Hsu and colleagues to identify m6A sites in App mRNA and to determine if the abundance of message in the cytoplasm relative to the nucleus is altered in Fmr1 knockout mouse brain cortex. Given that processing of APP to Aß and soluble APP alpha (sAPPα) contributes to disease phenotypes, we also investigated whether Fmr1KO associates with nuclear export of the mRNAs for APP protein processing enzymes, including ß-site amyloid cleaving enzyme (Bace1), A disintegrin and metalloproteinases (Adams), and presenilins (Psen). Fmr1KO did not alter the nuclear/cytoplasmic abundance of App mRNA. Of 36 validated FMRP targets, 35 messages contained m6A peaks but only Agap2 mRNA was selectively enriched in Fmr1KO nucleus. The abundance of the APP processing enzymes Adam9 and Psen1 mRNA, which code for a minor alpha-secretase and gamma-secretase, respectively, were selectively enriched in wild type cytoplasm.


Subject(s)
ADAM Proteins/metabolism , Adenosine/analogs & derivatives , Cell Nucleus/metabolism , Databases, Nucleic Acid , Fragile X Mental Retardation Protein/metabolism , Membrane Proteins/metabolism , Presenilin-1/metabolism , RNA, Messenger/metabolism , ADAM Proteins/genetics , Active Transport, Cell Nucleus/genetics , Adenosine/genetics , Adenosine/metabolism , Animals , Cell Nucleus/genetics , Fragile X Mental Retardation Protein/genetics , Membrane Proteins/genetics , Mice , Presenilin-1/genetics , RNA, Messenger/genetics
18.
Sleep ; 43(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-32369586

ABSTRACT

STUDY OBJECTIVES: Accumulating evidence suggests a strong association between sleep, amyloid-beta (Aß) deposition, and Alzheimer's disease (AD). We sought to determine if (1) deficits in rest-activity rhythms and sleep are significant phenotypes in J20 AD mice, (2) metabotropic glutamate receptor 5 inhibitors (mGluR5) could rescue deficits in rest-activity rhythms and sleep, and (3) Aß levels are responsive to treatment with mGluR5 inhibitors. METHODS: Diurnal rest-activity levels were measured by actigraphy and sleep-wake patterns by electroencephalography, while animals were chronically treated with mGluR5 inhibitors. Behavioral tests were performed, and Aß levels measured in brain lysates. RESULTS: J20 mice exhibited a 4.5-h delay in the acrophase of activity levels compared to wild-type littermates and spent less time in rapid eye movement (REM) sleep during the second half of the light period. J20 mice also exhibited decreased non-rapid eye movement (NREM) delta power but increased NREM sigma power. The mGluR5 inhibitor CTEP rescued the REM sleep deficit and improved NREM delta and sigma power but did not correct rest-activity rhythms. No statistically significant differences were observed in Aß levels, rotarod performance, or the passive avoidance task following chronic mGluR5 inhibitor treatment. CONCLUSIONS: J20 mice have disruptions in rest-activity rhythms and reduced homeostatic sleep pressure (reduced NREM delta power). NREM delta power was increased following treatment with a mGluR5 inhibitor. Drug bioavailability was poor. Further work is necessary to determine if mGluR5 is a viable target for treating sleep phenotypes in AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Animals , Circadian Rhythm , Electroencephalography , Mice , Sleep , Sleep, REM
20.
Nutrients ; 12(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963665

ABSTRACT

The United States implemented mandatory fortification of cereal grains with folic acid in 1998 to prevent neural tube defects (NTDs) during pregnancy. The health benefits of folate (vitamin B9) are well documented; however, there are potential risks of exceeding the upper tolerable limit, particularly in vulnerable populations. We conducted a population-based analysis of the Food Fortification Initiative dataset to determine the strength of the evidence regarding reports of decreased NTDs at the national level in response to mandatory folic acid fortification of cereal grains. We found a very weak correlation between NTD prevalence and the level of folic acid fortification, irrespective of the cereal grain fortified (wheat, maize or rice). Stratification of the data based on socioeconomic status (SES) indicated a strong linear relationship between reduced NTDs and better SES. We conclude that national fortification with folic acid is not associated with a significant decrease in the prevalence of NTDs at the population level.


Subject(s)
Edible Grain , Folic Acid/administration & dosage , Food, Fortified , Neural Tube Defects/prevention & control , Databases, Factual , Female , Humans , Neural Tube Defects/diagnosis , Neural Tube Defects/epidemiology , Pregnancy , Prevalence , Protective Factors , Retrospective Studies , Risk Assessment , Risk Factors , Social Determinants of Health , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...