Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Ecol ; 35(1): arad098, 2024.
Article in English | MEDLINE | ID: mdl-38144906

ABSTRACT

Circadian rhythms are ubiquitous in nature and endogenous circadian clocks drive the daily expression of many fitness-related behaviors. However, little is known about whether such traits are targets of selection imposed by natural enemies. In Hawaiian populations of the nocturnally active Pacific field cricket (Teleogryllus oceanicus), males sing to attract mates, yet sexually selected singing rhythms are also subject to natural selection from the acoustically orienting and deadly parasitoid fly, Ormia ochracea. Here, we use T. oceanicus to test whether singing rhythms are endogenous and scheduled by circadian clocks, making them possible targets of selection imposed by flies. We also develop a novel audio-to-circadian analysis pipeline, capable of extracting useful parameters from which to train machine learning algorithms and process large quantities of audio data. Singing rhythms fulfilled all criteria for endogenous circadian clock control, including being driven by photoschedule, self-sustained periodicity of approximately 24 h, and being robust to variation in temperature. Furthermore, singing rhythms varied across individuals, which might suggest genetic variation on which natural and sexual selection pressures can act. Sexual signals and ornaments are well-known targets of selection by natural enemies, but our findings indicate that the circadian timing of those traits' expression may also determine fitness.

2.
BMC Ecol Evol ; 23(1): 78, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38124034

ABSTRACT

BACKGROUND: Anthropogenic habitat change is occurring rapidly, and organisms can respond through within-generation responses that improve the match between their phenotype and the novel conditions they encounter. But, plastic responses can be adaptive or maladaptive and are most likely to be adaptive only when contemporary conditions reasonably mimic something experienced historically to which a response has already evolved. Noise pollution is a ubiquitous anthropogenic stressor that accompanies expanding urbanization. We tested whether the amplitude of traffic noise influences a suite of fitness-related traits (e.g. survival, life history, reproductive investment, immunity) and whether that depends on the life stage at which the noise is experienced (juvenile or adult). Our treatments mimic the conditions experienced by animals living in urban roadside environments with variable vehicle types, but continuous movement of traffic. We used the Pacific field cricket, an acoustically communicating insect that was previously shown to experience some negative behavioral and life history responses to very loud, variable traffic noise, as a model system. RESULTS: After exposing crickets to one of four traffic noise levels (silence, 50dBA, 60dBA, and 70dBA which are commonly experienced in their natural environment) during development, at adulthood, or both, we measured a comprehensive suite of fifteen fitness-related traits. We found that survival to adulthood was lower under some noise treatments than under silence, and that the number of live offspring hatched depended on the interaction between a female's juvenile and adult exposure to traffic noise. Both of these suggest that our noise treatments were indeed a stressor. However, we found no evidence of negative or positive fitness effects of noise on the other thirteen measured traits. CONCLUSIONS: Our results suggest that, in contrast to previous work with loud, variable traffic noise, when noise exposure is relatively constant, plasticity may be sufficient to buffer many negative fitness effects and/or animals may be able to habituate to these conditions, regardless of amplitude. Our work highlights the importance of understanding how the particular characteristics of noise experienced by animals influence their biological responses and provides insight into how commensal animals thrive in human-dominated habitats.


Subject(s)
Noise, Transportation , Animals , Female , Humans , Noise, Transportation/adverse effects , Reproduction/physiology , Environment , Ecosystem , Phenotype
3.
Wellcome Open Res ; 6: 186, 2021.
Article in English | MEDLINE | ID: mdl-34805551

ABSTRACT

Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that the Plasmodium chabaudi's schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in periodic manner due to the host's rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null TTFL clock-disrupted mice with 1×10 5 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro elicits changes their schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine - fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host's daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite's time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.

4.
Vector Borne Zoonotic Dis ; 20(8): 633-635, 2020 08.
Article in English | MEDLINE | ID: mdl-32283047

ABSTRACT

Introduction: In North America, the blacklegged tick (Ixodes scapularis) is a vector of several human pathogens, and tick-borne disease incidence is increasing. Objectives: We estimated the prevalence of questing blacklegged ticks vectoring three zoonotic pathogens in Vilas County, Wisconsin. Materials and Methods: We collected 461 adult blacklegged ticks and used PCR to screen for the presence of pathogens that cause Lyme disease (Borrelia burgdorferi), human granulocytic anaplasmosis (HGA, Anaplasma phagocytophilum), and babesiosis (Babesia microti). Results: We found that 52.5% of ticks carried at least one pathogen. The estimated infection prevalence in the tick population was 17.4% (Lyme disease), 14.3% (HGA), and 6.5% (babesiosis). Multiple pathogens were present in 14.3% of ticks surveyed. Conclusion: About half of questing ticks tested in this study carried at least one zoonotic pathogen. Coinfection was common in our study area and, if not properly recognized, leads to greater risk of underdiagnosis.


Subject(s)
Anaplasma phagocytophilum/isolation & purification , Babesia microti/isolation & purification , Borrelia burgdorferi/isolation & purification , Coinfection/microbiology , Ixodes/microbiology , Animals , Wisconsin
5.
Malar J ; 19(1): 17, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937300

ABSTRACT

BACKGROUND: The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Reduced gametocyte density may not simply follow from a loss of asexuals because investment into gametocytes ("conversion rate") is a plastic trait; furthermore, the densities of both asexuals and gametocytes are highly dynamic during infection. Hence, the reasons for the reduction of gametocytes in infections that are out-of-synch with host circadian rhythms remain unclear. Here, two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host's circadian immune responses. METHODS: First, conversion rate data were analysed from a previous experiment comparing infections of P. chabaudi that were in-synch or 12 h out-of-synch with host circadian rhythms. Second, three new experiments examined whether the inflammatory cytokine TNF varies in its gametocytocidal efficacy according to host time-of-day and gametocyte age. RESULTS: There was no evidence that parasites reduce conversion or that their gametocytes become more vulnerable to TNF when out-of-synch with host circadian rhythms. CONCLUSIONS: The factors causing the reduction of gametocytes in out-of-synch infections remain mysterious. Candidates for future investigation include alternative rhythmic factors involved in innate immune responses and the rhythmicity in essential resources required for gametocyte development. Explaining why it matters for gametocytes to be synchronized to host circadian rhythms might suggest novel approaches to blocking transmission.


Subject(s)
Circadian Rhythm , Erythrocytes/parasitology , Malaria/parasitology , Plasmodium chabaudi/physiology , Tumor Necrosis Factor-alpha/administration & dosage , Animals , Circadian Rhythm/immunology , Female , Flow Cytometry , Gametogenesis/physiology , Linear Models , Malaria/blood , Malaria/immunology , Male , Merozoites/physiology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Plasmodium chabaudi/genetics , Plasmodium chabaudi/growth & development , Plasmodium chabaudi/immunology , Random Allocation , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
6.
Nat Ecol Evol ; 3(4): 552-560, 2019 04.
Article in English | MEDLINE | ID: mdl-30886375

ABSTRACT

Biological rhythms coordinate organisms' activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.


Subject(s)
Biological Evolution , Circadian Rhythm , Host-Parasite Interactions , Animals , Ecology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...