Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(45): 16256-16263, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29039919

ABSTRACT

Protein regions that are involved in protein-protein interactions (PPIs) very often display a high degree of intrinsic disorder, which is reduced during the recognition process. A prime example is binding of the rigid 14-3-3 adapter proteins to their numerous partner proteins, whose recognition motifs undergo an extensive disorder-to-order transition. In this context, it is highly desirable to control this entropy-costly process using tailored stabilizing agents. This study reveals how the molecular tweezer CLR01 tunes the 14-3-3/Cdc25CpS216 protein-protein interaction. Protein crystallography, biophysical affinity determination and biomolecular simulations unanimously deliver a remarkable finding: a supramolecular "Janus" ligand can bind simultaneously to a flexible peptidic PPI recognition motif and to a well-structured adapter protein. This binding fills a gap in the protein-protein interface, "freezes" one of the conformational states of the intrinsically disordered Cdc25C protein partner and enhances the apparent affinity of the interaction. This is the first structural and functional proof of a supramolecular ligand targeting a PPI interface and stabilizing the binding of an intrinsically disordered recognition motif to a rigid partner protein.


Subject(s)
14-3-3 Proteins/chemistry , Entropy , Intrinsically Disordered Proteins/chemistry , Ligands , cdc25 Phosphatases/chemistry , 14-3-3 Proteins/metabolism , Amino Acid Motifs , Binding Sites , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Conformation , Protein Stability , cdc25 Phosphatases/metabolism
2.
Elife ; 42015 Aug 18.
Article in English | MEDLINE | ID: mdl-26284498

ABSTRACT

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.


Subject(s)
Amyloid/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Antimetabolites/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Semen/drug effects , Disease Transmission, Infectious/prevention & control , HIV Infections/prevention & control , HIV Infections/transmission , Humans , Male , Semen/chemistry , Semen/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...