Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(1): 1095-1105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37878452

ABSTRACT

Comparative visualization of scalar fields is often facilitated using similarity measures such as edit distances. In this paper, we describe a novel approach for similarity analysis of scalar fields that combines two recently introduced techniques: Wasserstein geodesics/barycenters as well as path mappings, a branch decomposition-independent edit distance. Effectively, we are able to leverage the reduced susceptibility of path mappings to small perturbations in the data when compared with the original Wasserstein distance. Our approach therefore exhibits superior performance and quality in typical tasks such as ensemble summarization, ensemble clustering, and temporal reduction of time series, while retaining practically feasible runtimes. Beyond studying theoretical properties of our approach and discussing implementation aspects, we describe a number of case studies that provide empirical insights into its utility for comparative visualization, and demonstrate the advantages of our method in both synthetic and real-world scenarios. We supply a C++ implementation that can be used to reproduce our results.

2.
IEEE Trans Vis Comput Graph ; 30(1): 1085-1094, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871087

ABSTRACT

Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: A scalable algorithm for the computation of merge trees via extremum graphs. The core idea of ExTreeM is to first derive the extremum graph G of an input scalar field f defined on a cell complex K, and subsequently compute the unaugmented merge tree of f on G instead of K; which are equivalent. Any merge tree algorithm can be carried out significantly faster on G, since K in general contains substantially more cells than G. To further speed up computation, ExTreeM includes a tailored procedure to derive merge trees of extremum graphs. The computation of the fully augmented merge tree, i.e., a merge tree domain segmentation of K, can then be performed in an optional post-processing step. All steps of ExTreeM consist of procedures with high parallel efficiency, and we provide a formal proof of its correctness. Our experiments, performed on publicly available datasets, report a speedup of up to one order of magnitude over the state-of-the-art algorithms included in the TTK and VTK-m software libraries, while also requiring significantly less memory and exhibiting excellent scaling behavior.

3.
Plant J ; 116(4): 974-988, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818860

ABSTRACT

In modern reproducible, hypothesis-driven plant research, scientists are increasingly relying on research data management (RDM) services and infrastructures to streamline the processes of collecting, processing, sharing, and archiving research data. FAIR (i.e., findable, accessible, interoperable, and reusable) research data play a pivotal role in enabling the integration of interdisciplinary knowledge and facilitating the comparison and synthesis of a wide range of analytical findings. The PLANTdataHUB offers a solution that realizes RDM of scientific (meta)data as evolving collections of files in a directory - yielding FAIR digital objects called ARCs - with tools that enable scientists to plan, communicate, collaborate, publish, and reuse data on the same platform while gaining continuous quality control insights. The centralized platform is scalable from personal use to global communities and provides advanced federation capabilities for institutions that prefer to host their own satellite instances. This approach borrows many concepts from software development and adapts them to fit the challenges of the field of modern plant science undergoing digital transformation. The PLANTdataHUB supports researchers in each stage of a scientific project with adaptable continuous quality control insights, from the early planning phase to data publication. The central live instance of PLANTdataHUB is accessible at (https://git.nfdi4plants.org), and it will continue to evolve as a community-driven and dynamic resource that serves the needs of contemporary plant science.


Subject(s)
Databases as Topic , Information Dissemination , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...