Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 177: 113856, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257633

ABSTRACT

Aristolochic acids (AAs) are naturally occurring genotoxic carcinogens linked to Balkan endemic nephropathy and aristolochic acid nephropathy. Aristolochic acid I and II (AA-I and AA-II) are the most abundant AAs, and AA-I has been reported to be more genotoxic and nephrotoxic than AA-II. This study aimed to explore metabolic differences underlying the differential toxicity. We developed a novel microdialysis sampling coupled with solid-phase extraction liquid chromatography-tandem mass spectrometry (MD-SPE-LC-MS/MS) to simultaneously study the toxicokinetics (TK) of AA-I and AA-II and their corresponding aristolactams (AL-I and AL-II) in the blood of Sprague Dawley rats co-treated with AA-1 and AA-II. Near real-time monitoring of these analytes in the blood of treated rats revealed that AA-I was absorbed, distributed, and eliminated more rapidly than AA-II. Moreover, the metabolism efficiency of AA-I to AL-I was higher compared to AA-II to AL-II. Only 0.58% of AA-I and 0.084% of AA-II was reduced to AL-I and AL-II, respectively. The findings are consistent with previous studies and support the contention that differences in the in vivo metabolism of AA-I and AA-II may be critical factors for their differential toxicities.


Subject(s)
Aristolochic Acids , Balkan Nephropathy , Kidney Diseases , Rats , Animals , Chromatography, Liquid/methods , Aristolochic Acids/toxicity , Aristolochic Acids/chemistry , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Microdialysis , Toxicokinetics
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(25): 2494-500, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21802379

ABSTRACT

Aristolochic acids (AAs), nephrotoxicants and known human carcinogens, are a mixture of structurally related derivatives of nitrophenanthrene carboxylic acids with the major components being aristolochic acid I and aristolochic acid II. People may ingest small amounts of AAs from its natural presence in medicinal plants and herbs of the family Aristolochiaceae, including the genera Aristolochia and Asarum, which have been used worldwide in folk medicine for centuries. In order to assess AA intake, an on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry (on-line SPE-LC/MS/MS) method was developed to analyze their most abundant corresponding metabolites, aristolactams (ALs), in urine to serve as biomarkers. The limits of quantitation were 0.006 ng for aristolactam I (AL-I), and 0.024 ng for aristolactam II (AL-II) on column. Recovery varied from 98.0% to 99.5%, and matrix effects were within 75.3-75.4%. This method was applied to analyze ALs in the urine samples collected on days 1, 2, 4, and 7 from mice treated with 30 mg/kg or 50mg/kg AAs. Their half lives were estimated to be 3.55 h and 4.00 for AL-I, and 4.04 and 4.83 h for AL-II, depending on AAs doses. These results demonstrated that the first simple on-line SPE-LC/MS/MS method was successfully developed to analyze urinary ALs with excellent sensitivity and specificity to serve as biomarkers to assess current AA intake from AAs-containing Chinese herbs.


Subject(s)
Aristolochic Acids/urine , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Animals , Aristolochic Acids/pharmacokinetics , Drugs, Chinese Herbal , Male , Mice , Mice, Inbred C3H , Reproducibility of Results
3.
Appl Biochem Biotechnol ; 158(3): 631-41, 2009 Sep.
Article in English | MEDLINE | ID: mdl-18830825

ABSTRACT

Association with nucleic acid has been recognized as a unique role of lysozyme and may explain why lysozyme was called a killer protein against HIV infection. In the present study, we characterized the interactions of lysozyme and its derived peptides with a biotin-labeled pUC19 plasmid DNA. Real-time detection of the macromolecular interaction was performed using the SPR (surface plasmon resonance) spectroscopy. The SPR sensorgrams were analyzed and the association and dissociation rate constants as well as the dissociation equilibrium constant KD were, thus, estimated. The results reveal that other than the electrostatic interactions between the basic protein and the nucleotide sequences carrying negative charges, the specific DNA-binding motifs at the N- and C-termini of lysozyme were also involved in the interactions. The nonapeptide RAWVAWRNR (aa 107-115 of lysozyme) reported previously to block HIV-1 viral entrance and replication was also able to bind DNA with its KD value comparable to that of histones. The possibilities of ligand-binding-induced conformational changes were investigated using the circular dichroism spectroscopy. The CD spectra (200-320 nm) reveal that the conformational changes indeed occur as the spectra of lysozyme-DNA interactions are much less at the major trough region than the sum of individual spectra. The interaction of lysozyme with DNA molecules may interfere with DNA replication, modulate gene expression, and block bacterial and viral infections. These all suggest that human lysozyme may represent part of the innate immune system with a very broad protective spectrum.


Subject(s)
DNA/metabolism , Muramidase/chemistry , Muramidase/metabolism , Amino Acid Sequence , Circular Dichroism , Humans , Kinetics , Molecular Sequence Data , Surface Plasmon Resonance
4.
Appl Biochem Biotechnol ; 159(1): 261-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-18931945

ABSTRACT

DNA triplex modulates gene expression by forming stable conformation in physiological condition. However, it is not feasible to observe this unique molecular structure of large molecule with 54 oligodeoxynucleotides directly by conventional nuclear magnetic approach. In this study, we observed directly single molecular images of paperclip DNA triplexes formation in a buffer solution of pH 6.0 by atomic force microscopy (AFM). Meanwhile, a diffuse "tail" of unwound DNA was observed in pH 8.0 solution. This designable approach in visualizing the overall structures and shapes of oligo-DNAs at the single molecular level, by AFM, is applicable to other biopolymers as well.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Image Enhancement/methods , Microscopy, Atomic Force/methods , Nucleic Acid Conformation , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL