Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 381(6659): 794-799, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590355

ABSTRACT

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Subject(s)
Biological Products , Cyclophilin A , Immunophilins , Molecular Chaperones , Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Cysteine/chemistry , Cysteine/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Cyclophilin A/chemistry , Cyclophilin A/metabolism , Immunophilins/chemistry , Immunophilins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
2.
Sci Signal ; 11(544)2018 08 21.
Article in English | MEDLINE | ID: mdl-30131368

ABSTRACT

Necroptosis, an inflammatory form of cell death, is initiated by the activation of receptor-interacting protein kinase 3 (RIPK3), which depends on its interaction with RIPK1. Although catalytically inactive, the RIPK3 mutant D161N still stimulates RIPK1-dependent apoptosis and embryonic lethality in RIPK3 D161N homozygous mice. Whereas the absence of RIPK1 rescues RIPK3 D161N homozygous mice, we report that the absence of RIPK1 leads to embryonic lethality in RIPK3 D161N heterozygous mice. This suggested that the kinase domain of RIPK3 had a noncatalytic function that was enhanced by a conformation induced by the D161N mutation. We found that the RIPK3 kinase domain homodimerized through a surface that is structurally similar to that of the RAF family members. Mutation of residues at the dimer interface impaired dimerization and necroptosis. Kinase domain dimerization stimulated the activation of RIPK3 through cis-autophosphorylation. This noncatalytic, allosteric activity was enhanced by certain kinase-deficient mutants of RIPK3, including D161N. Furthermore, apoptosis induced by certain RIPK3 inhibitors was also dependent on the kinase dimerization interface. Our studies reveal that the RIPK3 kinase domain exhibits catalytically independent function that is important for both RIPK3-dependent necroptosis and apoptosis.


Subject(s)
Apoptosis , Protein Domains , Protein Multimerization , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Necrosis , Protein Kinases/genetics , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
3.
Cancer Cell ; 29(4): 477-493, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26996308

ABSTRACT

Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the ß3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy.


Subject(s)
Genes, erbB-1 , Genes, erbB-2 , Mutation , Neoplasm Proteins/genetics , Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Amino Acid Sequence , Amino Acid Substitution , Antineoplastic Agents/pharmacology , Base Pairing/genetics , Conserved Sequence , Dimerization , Drug Resistance, Neoplasm/genetics , Enzyme Activation/genetics , ErbB Receptors/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Protein Conformation , Protein Interaction Mapping , Protein Kinase Inhibitors/pharmacology , Protein Structure, Secondary , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship
4.
Structure ; 22(9): 1221-1222, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25185824

ABSTRACT

In this issue of Structure, Liu and colleagues report the structure of the TNF superfamily member LIGHT bound to decoy receptor 3 (DcR3). Both LIGHT and DcR3 interact with multiple binding partners. The authors identify a conserved interaction important for affinity as well as additional interactions that can be targeted to introduce selectivity.


Subject(s)
Receptors, Tumor Necrosis Factor, Member 6b/chemistry , Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry , Humans
5.
Elife ; 2: e01340, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24171105

ABSTRACT

The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI:http://dx.doi.org/10.7554/eLife.01340.001.


Subject(s)
Hedgehog Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Sterols/chemistry , Zebrafish Proteins/chemistry , Zebrafish/genetics , Animals , Binding Sites , Crystallography, X-Ray , Embryo, Nonmammalian , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Ligands , Mice , Models, Molecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Smoothened Receptor , Structure-Activity Relationship , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 110(41): 16420-5, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062467

ABSTRACT

Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.


Subject(s)
Glycosaminoglycans/metabolism , Hedgehog Proteins/chemistry , Hedgehog Proteins/metabolism , Models, Molecular , Protein Conformation , Proteoglycans/metabolism , Signal Transduction/physiology , Chromatography, Affinity , Escherichia coli , Glycosaminoglycans/chemistry , Humans , Mutagenesis, Site-Directed , Polymerization , Ultracentrifugation
7.
PLoS Pathog ; 4(8): e1000128, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18704168

ABSTRACT

Vaccinia virus (VACV), the prototype poxvirus, encodes numerous proteins that modulate the host response to infection. Two such proteins, B14 and A52, act inside infected cells to inhibit activation of NF-kappaB, thereby blocking the production of pro-inflammatory cytokines. We have solved the crystal structures of A52 and B14 at 1.9 A and 2.7 A resolution, respectively. Strikingly, both these proteins adopt a Bcl-2-like fold despite sharing no significant sequence similarity with other viral or cellular Bcl-2-like proteins. Unlike cellular and viral Bcl-2-like proteins described previously, A52 and B14 lack a surface groove for binding BH3 peptides from pro-apoptotic Bcl-2-like proteins and they do not modulate apoptosis. Structure-based phylogenetic analysis of 32 cellular and viral Bcl-2-like protein structures reveals that A52 and B14 are more closely related to each other and to VACV N1 and myxoma virus M11 than they are to other viral or cellular Bcl-2-like proteins. This suggests that a progenitor poxvirus acquired a gene encoding a Bcl-2-like protein and, over the course of evolution, gene duplication events have allowed the virus to exploit this Bcl-2 scaffold for interfering with distinct host signalling pathways.


Subject(s)
Apoptosis , Evolution, Molecular , NF-kappa B/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , Vaccinia virus/chemistry , Viral Proteins/chemistry , Cell Line , Crystallography, X-Ray , Humans , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Protein Folding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Structure-Activity Relationship , Vaccinia/metabolism , Vaccinia virus/metabolism , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL