Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2304040, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734871

ABSTRACT

Nanoparticle physicochemical properties have received great attention in optimizing the performance of nanoparticles for biomedical applications. For example, surface functionalization with small molecules or linear hydrophilic polymers is commonly used to tune the interaction of nanoparticles with proteins and cells. However, it is challenging to control the location of functional groups within the shell for conventional nanoparticles. Nanoparticle surfaces composed of shape-persistent bottlebrush polymers allow hierarchical control over the nanoparticle shell but the effect of the bottlebrush backbone on biological interactions is still unknown. The synthesis is reported of novel heterobifunctional poly(ethylene glycol) (PEG)-norbornene macromonomers modified with various small molecules to form bottlebrush polymers with different backbone chemistries. It is demonstrated that micellar nanoparticles composed of poly(lactic acid) (PLA)-PEG bottlebrush block copolymer (BBCP) with neutral and cationic backbone modifications exhibit significantly reduced cellular uptake compared to conventional unmodified BBCPs. Furthermore, the nanoparticles display long blood circulation half-lives of ≈22 hours and enhanced tumor accumulation in mice. Overall, this work sheds light on the importance of the bottlebrush polymer backbone and provides a strategy to improve the performance of nanoparticles in biomedical applications.

2.
Adv Mater ; : e2311283, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489768

ABSTRACT

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed. Here, a library of glycocalyx-mimicking nanoparticles (GlyNPs) comprising five randomly combined sugar moieties is generated, and direct in vivo library screening is used to identify GlyNPs with preferential biodistribution in liver, spleen, lung, kidneys, heart, and brain. Each organ-targeting GlyNP hit show cellular tropism within the organ. Liver, kidney, and spleen-targeting GlyNP hits equipped with therapeutics effectively can alleviate the symptoms of acetaminophen-induced liver injury, cisplatin-induced kidney injury, and immune thrombocytopenia in mice, respectively. Furthermore, the differential organ targeting of GlyNP hits is influenced not by the protein corona but by the sugar moieties displayed on their surface. It is envisioned that the GlyNP-based platform may enable the organ- and cell-targeted delivery of therapeutic cargoes.

3.
ACS Nano ; 18(4): 2815-2827, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227820

ABSTRACT

Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Polyethylene Glycols , Polymers , Proteins , Nanoparticles/metabolism
4.
Angew Chem Int Ed Engl ; 62(34): e202304815, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37310766

ABSTRACT

Common medications for treating inflammatory bowel disease (IBD) have limited therapeutic efficacy and severe adverse effects. This underscores the urgent need for novel therapeutic approaches that can effectively target inflamed sites in the gastrointestinal tract upon oral administration, exerting potent therapeutic efficacy while minimizing systemic effects. Here, we report the construction and in vivo therapeutic evaluation of a library of anti-inflammatory glycocalyx-mimicking nanoparticles (designated GlyNPs) in a mouse model of IBD. The anti-inflammatory GlyNP library was created by attaching bilirubin (BR) to a library of glycopolymers composed of random combinations of the five most naturally abundant sugars. Direct in vivo screening of 31 BR-attached anti-inflammatory GlyNPs via oral administration into mice with acute colitis led to identification of a candidate GlyNP capable of targeting macrophages in the inflamed colon and effectively alleviating colitis symptoms. These findings suggest that the BR-attached GlyNP library can be used as a platform to identify anti-inflammatory nanomedicines for various inflammatory diseases.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Nanoparticles , Animals , Mice , Glycocalyx , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
ACS Nano ; 17(11): 10996-11013, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37227087

ABSTRACT

Inflammatory bowel disease (IBD) manifests as intestinal barrier destruction, mucosal immunity dysregulation, and disrupted gut microbiome homeostasis. Conventional anti-inflammatory medications for IBD therapy partially alleviate symptoms but are unable to restore normal barrier and immune function. Here, we report a nanomedicine comprising bilirubin (BR)-attached low-molecular-weight, water-soluble chitosan nanoparticles (LMWC-BRNPs), that promotes restoration of the intestinal barrier, mucosal immunity, and the gut microbiome, thereby exerting robust therapeutic efficacy. In a mouse model of dextran sulfate sodium salt (DSS)-induced colitis, orally administered LMWC-BRNPs were retained in the GI tract much longer than other nonmucoadhesive BRNPs owing to the mucoadhesiveness of LMWC via electrostatic interaction. Treatment with LMWC-BRNPs led to considerable recovery of the damaged intestinal barrier compared with the current IBD medication, 5-aminosalicylic acid (5-ASA). Orally administered LMWC-BRNPs were taken up by pro-inflammatory macrophages and inhibited their activity. They also concurrently increased the population of regulatory T cells, thereby leading to the recovery of dysregulated mucosal immunity. An analysis of the gut microbiome revealed that LMWC-BRNPs treatment significantly attenuated the increase Turicibacter, an inflammation-related microorganism, resulting in protection of gut microbiome homeostasis. Taken together, our findings indicate that LMWC-BRNPs restored normal functions of the intestine and have high potential for use as a nanomedicine for IBD therapy.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Bilirubin/pharmacology , Nanomedicine , Immunity, Mucosal , Colitis/chemically induced , Colitis/drug therapy , Intestines , Inflammatory Bowel Diseases/drug therapy , Mice, Inbred C57BL , Disease Models, Animal , Colon
6.
Adv Mater ; 34(30): e2203993, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35639412

ABSTRACT

Cancer-targeting ligands used for nanomedicines have been limited mostly to antibodies, peptides, aptamers, and small molecules thus far. Here, a library of glycocalyx-mimicking nanoparticles as a platform to enable screening and identification of cancer-targeting nanomedicines is reported. Specifically, a library of 31 artificial glycopolymers composed of either homogeneous or heterogeneous display of five different sugar moieties (ß-glucose, ß-galactose, α-mannose, ß-N-acetyl glucosamine, and ß-N-acetyl galactosamine) is converted to a library of glyconanoparticles (GlyNPs). GlyNPs optimal for targeting CT26, DU145, A549, and PC3 tumors are systematically screened and identified. The cypate-conjugated GlyNP displaying α-mannose and ß-N-acetyl glucosamine show selective targeting and potent photothermal therapeutic efficacy against A549 human lung tumors. The docetaxel-contained GlyNP displaying ß-glucose, ß-galactose, and α-mannose demonstrate targeted chemotherapy against DU145 human prostate tumors. The results presented herein collectively demonstrate that the GlyNP library is a versatile platform enabling the identification of cancer-targeting glyconanoparticles and suggest its potential applicability for targeting various diseased cells beyond cancer.


Subject(s)
Mannose , Neoplasms , Early Detection of Cancer , Galactose , Glucosamine , Glucose , Humans , Male , Neoplasms/diagnosis , Neoplasms/drug therapy
7.
ACS Omega ; 7(12): 10526-10538, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382299

ABSTRACT

The risk of fomite-mediated transmission in the clinic is substantially increasing amid the recent COVID-19 pandemic as personal protective equipment (PPE) of hospital workers is easily contaminated by direct contact with infected patients. In this context, it is crucial to devise a means to reduce such transmission. Herein, we report an antimicrobial, antiviral, and antibiofouling trifunctional polymer that can be easily coated onto the surface of medical protective clothing to effectively prevent pathogen contamination on the PPE. The coating layer is formed on the surfaces of PPE by the simple spray coating of an aqueous solution of the trifunctional polymer, poly(dodecyl methacrylate (DMA)-poly(ethylene glycol) methacrylate (PEGMA)-quaternary ammonium (QA)). To establish an optimal ratio of antifouling and antimicrobial functional groups, we performed antifouling, antibacterial, and antiviral tests using four different ratios of the polymers. Antifouling and bactericidal results were assessed using Staphylococcus aureus, a typical pathogenic bacterium that induces an upper respiratory infection. Regardless of the molar ratio, polymer-coated PPE surfaces showed considerable antiadhesion (∼65-75%) and antibacterial (∼75-87%) efficacies soon after being in contact with pathogens and maintained their capability for at least 24 h, which is sufficient for disposable PPEs. Further antiviral tests using coronaviruses showed favorable results with PPE coated at two specific ratios (3.5:6:0.5 and 3.5:5.5:1) of poly(DMA-PEGMA-QA). Moreover, biocompatibility assessments using the two most effective polymer ratios showed no recognizable local or systemic inflammatory responses in mice, suggesting the potential of this polymer for immediate use in the field.

8.
Biomaterials ; 275: 120986, 2021 08.
Article in English | MEDLINE | ID: mdl-34175563

ABSTRACT

Pulmonary fibrosis is an irreparable and life-threatening disease with only limited therapeutic options. The recent outbreak of COVID-19 has caused a sharp rise in the incidence of pulmonary fibrosis owing to SARS-CoV-2 infection-mediated acute respiratory distress syndrome (ARDS). The considerable oxidative damage caused by locally infiltrated immune cells plays a crucial role in ARDS, suggesting the potential use of antioxidative therapeutics. Here, we report the therapeutic potential of nanoparticles derived from the endogenous antioxidant and anti-inflammatory bile acid, bilirubin (BRNPs), in treating pulmonary fibrosis in a bleomycin-induced mouse model of the disease. Our results demonstrate that BRNPs can effectively reduce clinical signs in mice, as shown by histological, disease index evaluations, and detection of biomarkers. Our findings suggest that BRNPs, with their potent antioxidant and anti-inflammatory effects, long blood circulation half-life, and preferential accumulation at the inflamed site, are potentially a viable clinical option for preventing Covid-19 infection-associated pulmonary fibrosis.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Bilirubin , Humans , Mice , Nanomedicine , Pulmonary Fibrosis/drug therapy , SARS-CoV-2
9.
J Control Release ; 325: 359-369, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32681946

ABSTRACT

Psoriasis is a prevalent chronic inflammatory skin disease characterized by thickening of the epidermis accompanied by lesional erythema, scaling, and induration as a result of abnormal proliferation of keratinocytes. During the development of psoriasis, levels of intracellular reactive oxygen species (ROS) within psoriatic lesions are elevated, activating a pro-inflammatory signaling cascade. Here, we evaluated the therapeutic efficacy and mode of action of bilirubin nanoparticles (BRNPs), based on the potent, endogenous antioxidant bilirubin, in a preclinical psoriasis model. We found that topical treatment of psoriatic lesions with BRNPs effectively attenuated upregulation of intracellular ROS levels within keratinocytes and ameliorated the symptoms of psoriasis. A subsequent mechanistic study showed that preventing oxidative stress in activated keratinocytes suppressed the secretion of inflammatory mediators and recruitment of immune cells. Subsequent expression of the antigen-presenting cell (APC) maturation markers, class II major histocompatibility complex (MHC class II), cluster of differentiation (CD) 80 and CD86, was significantly decreased, resulting in a reduction in the differentiation of naïve CD4+ T cells into interleukin (IL)-17-producing T-helper (Th) 17 cells. Unlike the commercial corticosteroid drug, clobetasol propionate (CLQ), BRNPs, composed of the endogenous antioxidant bilirubin and the approved polymer polyethylene glycol (PEG), did not exert systemic cytotoxicity. Collectively, these findings highlight the potential of BRNPs as a novel nanomedicine for ameliorating psoriasis-like skin inflammation through topical treatment and suggest that their use could be further expanded to treat other chronic skin inflammation diseases, including atopic dermatitis.


Subject(s)
Nanomedicine , Psoriasis , Bilirubin , Humans , Inflammation/drug therapy , Keratinocytes , Oxidative Stress , Psoriasis/drug therapy , Skin
10.
Chem Commun (Camb) ; 56(11): 1673-1676, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31939454

ABSTRACT

Methylene blue (MB) with a 10-N-carbamoyl linkage was discovered and developed as a multifunctional far-red (660 nm) photocleavable ligand capable of rendering a series of MB-conjugated compounds with off-to-on fluorescence switch properties through the controlled release of MB.

11.
J Appl Polym Sci ; 135(31)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30319143

ABSTRACT

Thermo-sensitive hydrogels are considered ideal for applications in the biomedical fields for their biocompatibility, flexibility, tissue-like water content, and reversible gelation property. By adjusting sufficient hydrophilic-hydrophobic balance in block copolymer structure, thermogel's critical gelation temperature can be modified to be near the physiological temperature, which makes it an appealing candidate for in situ gel depot. In this study, we report successful syntheses of novel multiple block copolymer compounds, denoted as dual-stimuli sensitive polymers (DSSPs), by copolymerizing Pluronic® P104 (7,100 Da) and 2,2-bis(aminoethoxy)propane (BAP) using diisocyanate linkers, L-lysine ethyl ester diisocyanate (DSSP-1) and 1,6-hexamethylene diisocyanate (DSSP-2). Through effective elongation of polymer chain lengths (DSSP-1: 41,760 Da, DSSP-2: 41,230 Da), Pluronic® P104's reversible thermal gelation properties were enhanced, as demonstrated by lowered critical gelation temperatures (DSSP-1: 36°C, DSSP-2: 38.7°C; 15 wt.%) that is near the physiological temperature. Furthermore, integration of acid-labile BAP allowed rapid pH-dependent degradation of the polymer, which was displayed by gel permeation chromatography (GPC) and release profiles of nile red and irinotecan from polymeric micelles and gels, respectively.

12.
Chem Commun (Camb) ; 54(65): 9031-9034, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30047958

ABSTRACT

SN-38 (7-ethyl-10-hydroxy-camptothecin) is an active metabolite of irinotecan (CPT-11) and the most potent camptothecin analogue. In this study, 2,4-dinitrobenzene sulfonyl (DNS) was covalently conjugated as a GSH-sensitive trigger to 10'-OH of SN-38 to yield a GSH-sensitive prodrug, denoted as DNS-SN38, with virtually quenched fluorescence due to donor-excited photo-induced electron transfer (d-PeT). By investigating DNS-SN38's activation properties upon fluorescence restoration and cytotoxic potency against ovarian cancer cell lines (A2780 and m-Cherry + OCSC1-F2), its potential applicability as a useful chemotherapeutic agent was demonstrated.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Fluorescent Dyes/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Camptothecin/chemistry , Camptothecin/metabolism , Camptothecin/pharmacology , Cell Line, Tumor , Cell Nucleus/metabolism , Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Glutathione/metabolism , Humans , Irinotecan , Kinetics , Mice , Microscopy, Confocal , Prodrugs/chemistry , Prodrugs/metabolism
13.
AAPS PharmSciTech ; 19(1): 27-35, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28895101

ABSTRACT

The transdermal patch formulation has many advantages, including noninvasiveness, an ability to bypass the first-pass metabolism, low dosage requirements, and prolonged drug delivery. However, the instability of solid-state drugs is one of the most critical problems observed in transdermal patch products. Therefore, a well-characterized approach for counteracting stability problems in solid-state drugs is crucial for improving the performance of transdermal patch products. This review provides insight into the solid-state stability of drugs associated with transdermal patch products and offers a comprehensive update on the various approaches being used for improving the stability of the active pharmaceutical ingredients currently being used.


Subject(s)
Transdermal Patch , Administration, Cutaneous , Drug Delivery Systems , Drug Stability , Humans , Pharmaceutical Preparations/administration & dosage
14.
Macromol Rapid Commun ; 38(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833950

ABSTRACT

In the past decade, the self-immolative biodegradable polymer arose as a novel paradigm for its efficient degradation mechanism and vast potential for advanced biomedical applications. This study reports successful synthesis of a novel biodegradable polymer capable of self-immolative backbone cleavage. The monomer is designed by covalent conjugations of both pendant redox-trigger (p-nitrobenzyl alcohol) and self-immolative linker (p-hydroxybenzyl alcohol) to the cyclization spacer (n-2-(hydroxyethyl)ethylene diamine), which serves as the structural backbone. The polymerization of the monomer with hexamethylene diisocyanate yields a linear redox-sensitive polymer that can systemically degrade via sequential 1,6-elimination and 1,5-cyclization reactions within an effective timeframe. Ultimately, the polymer's potential for biomedical application is simulated through in vitro redox-triggered release of paclitaxel from polymeric nanoparticles.


Subject(s)
Biodegradable Plastics/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polymers/chemistry , Biodegradable Plastics/therapeutic use , Cyclization , Humans , Isocyanates/chemistry , Nanoparticles/therapeutic use , Oxidation-Reduction , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Polymerization , Polymers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...