Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Anim Sci Technol ; 66(2): 398-411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38628689

ABSTRACT

Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.

2.
J Anim Sci Technol ; 65(5): 1053-1064, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37969335

ABSTRACT

Melatonin, which is produced from tryptophan, exerts various biological functions, including the regulation of circadian rhythm, sedative agents, and antioxidant ability. Therefore, we conducted two experiments with early-weaned rats and pigs to investigate the antioxidant and sedative effects of melatonin. In the rat experiment, a total of 42 rats (21 days old) were used, and the antioxidant capacity was determined. Next, we used 120 early-weaned piglets (21 days old) to conduct a 5-week experiment to evaluate the reductive effect of melatonin on energy-wasting movement, including roaming and fight states. Dietary melatonin supplementation significantly improved growth in both rats and pigs compared to the control groups. Additionally, rats fed a melatonin-supplemented diet showed advanced antioxidant capacity with a decrease in hepatic malondialdehyde concentration compared to rats fed a basal diet. Moreover, dietary melatonin ingestion increased resting and feeding behaviors and reduced roaming and fight behaviors during Days 8-21 compared to the control diet group. Collectively, early weaned animals given dietary melatonin supplementation showed improved growth through upregulation of hepatic antioxidant capacity and minimization of energy-wasting behavior, including roaming and fight states, after pigs' social hierarchy establishment.

3.
Animals (Basel) ; 12(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35268204

ABSTRACT

Dietary fat and oil could aid in reaching the high-energy requirements of fast-growing birds; however, these inclusions could lead to nutrient waste. This is because young birds have limited lipid digestion due to the low secretion of lipase and bile salt. Sophorolipid (SPL), a glycolipid emulsifier with lower toxicity and higher biodegradability, can upregulate fat utilization by increasing digestibility. Accordingly, a five-week-long experiment was conducted with 720 one-day-old chicks (Ross 308) to investigate the effects of dietary SPL on growth, organ characteristics, and gut health. The allotment was partitioned into four treatment groups according to their body weight with six replications (30 chick/pen). The three treatment diets comprised a basal diet with a formulation that met the Ross 308 standard and 5, 10, and 15 ppm SPL in the basal diet. During the experiment, the birds had free access to feed, and body weight and feed intake were measured at the end of each phase. Chickens were put down at the end of the growing and finishing phases, and jejunum and cecal samples were obtained to investigate organ characteristics and gut environments. The data were analyzed using the generalized linear model procedures of SAS 9.4, and all data were assessed for linear, quadratic, and cubic effects of dietary SPL-supplemented dosages. Body weight was significantly increased with 10 ppm of SPL supplementation in the grower phase without affecting feed efficiency. The relative weights of the intestine and the bursa of Fabricius were quadratically decreased by SPL supplementation with a lower population of Streptococcus and higher propionate and butyrate concentrations. Additionally, the dietary SPL supplementation groups showed a significantly increased villus/crypt ratio with higher intestinal expression levels of fatty acid translocase, diacylglycerol acyltransferase 2, and fatty acid transporter 4. Collectively, proper SPL supplementation in the chicken diet could improve growth performance by down-regulating immune modulation and up-regulating lipid digestion and absorption via modulation of gut microenvironments.

4.
BMC Vet Res ; 18(1): 8, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980133

ABSTRACT

BACKGROUND: In animals, weaning stress is the first and most critical stress. Weaning can negatively affect the growth performance of animals physically, psychologically, and pathologically. Our previous studies on the HT-29 cell line and early-weaned rats demonstrated that adequate sophorolipid (SPL) supplementation in feed could enhance the mucin-producing and wound healing capacities of the gut defense system by modulating gut microbiota. METHODS: We conducted an experiment with one hundred forty 21-day-old early weaned piglets (L x Y x D). They were allocated into 4 treatment and 7 replications (4 pigs per pen) according to their initial body weight. Body weight and feed intake were measured biweekly during experimental period. After 6 weeks, 28 pigs were randomly selected and sacrificed to collect plasma, jejunum, and cecal content samples. RESULTS: Dietary SPL supplementation at 5 and 10 mg/kg quadratically increased the average daily gain during the experimental period in the treatment groups when compared with the control group. The albumin levels of piglets fed with the SPL supplemented diet were downregulated to the normal range. Moreover, in feed, SPL supplementation at 5 and 10 mg/kg improved jejunal histological indices and gene expression levels related to mucin secretion and local inflammation markers. Consistent with these results, adequate SPL supplementation (5 and 10 mg/kg) increased the population of Prevotella, a beneficial bacterium, and its short-chain fatty acid production in the ceca of piglets. CONCLUSIONS: The occurrence of diarrhea after weaning in piglets could be reduced by feeding a 10 ppm of SPL supplemented diet which improves the gut defense system by improving the microbial population and enhancing mucin layer integrity.


Subject(s)
Animal Feed , Dietary Supplements , Oleic Acids/administration & dosage , Swine Diseases/prevention & control , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Gastrointestinal Microbiome , Mucins , Rats , Swine , Weaning
5.
Food Funct ; 13(1): 161-169, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34874374

ABSTRACT

The public has gradually begun to regard inflammatory bowel disease (IBD) as a crucial health issue; however, its mode of action has not been fully elucidated. Sophorolipid (SPL), a glycolipid-type biosurfactant, could be used as a potential treatment in physical intestinal dystrophy. We conducted a 2 × 2 factorial experiment to investigate the protective effect of SPL in a dextran sulfate sodium (DSS)-induced colitis mouse model (first factor, presence of SPL in feed; second factor, presence of DSS in water). Forty C57BL/6 mice (8-week-old) were used, and they were allocated to treatments according to their initial body weight. After a 7 d adjustment period, the DSS treatment was initiated in specific groups. At day 14, DSS was withdrawn from mice, and half of the mice were randomly selected and euthanized to collect colon and colon content samples. Three days after the end of DSS treatment, the rest of the mice were euthanized to investigate the therapeutic effect of SPL. Dietary SPL improved the growth performance in 3 d after DSS treatment, and the histopathological score was lower in the DSS-treated SPL group than in the DSS-treated control group. Mucosal thickness and goblet cell numbers significantly increased in the SPL-supplemented groups compared to in the control group. Similarly, SPL supplementation upregulated the gene expression levels of mucin-2, interleukin-10, and transforming growth factor-ß, and increased the concentration of short chain fatty acid compared to the control groups. In conclusion, dietary supplementation with SPL attenuated the pathological response against acute and chronic inflammation by the maintenance of the mucosal barrier and wound healing capacity.


Subject(s)
Colitis/metabolism , Intestine, Large/drug effects , Oleic Acids/pharmacology , Protective Agents/pharmacology , Animals , Colitis/chemically induced , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestine, Large/cytology , Intestine, Large/pathology , Mice , Mice, Inbred C57BL
6.
J Anim Sci Technol ; 64(6): 1092-1104, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36811993

ABSTRACT

Using antibiotics as growth promoter has been banned in poultry feed industry, thus various researchers try to seek an alternative to replace the growth-promoting antibiotics. In this study, we aimed to evaluate the growth performance via intestinal nutrient utilization and cecal microbial composition of broiler after dietary supplementation with most commonly using antibiotics, zinc bacitracin, and sophorolipid. A total of 180 1-day-old chicks were randomly assigned, and dietary treatment was as follow: CON, basal diet; ZB, 100 ppm of zinc bacitracin supplemented diet; and SPL, 250 ppm of sophorolipid supplemented diet. Their growth performance was evaluated and the samples of blood, small intestine, and ileal and cecal digesta were collected for biochemical, histological, and genomic analyses. The body weight and average daily gain of 7-day-old chicks were higher in ZB and those in overall experimental period were improved by ZB and SPL supplementation (p < 0.05). Their intestinal characteristics were not affected by dietary treatments in duodenum and ileum. Nonetheless, villus height was increased by SPL supplementation in jejunum (p < 0.05). Moreover, dietary SPL supplementation could down-regulate the expression level of pro-inflammatory cytokine, IL-1ß (p < 0.05). mRNA levels of lipid and protein transporters did not differ among the treatments, however, relative expression levels of carbohydrate transporters, GLUT2 and SGLT1 were increased in broiler chicken's jejumum fed zinc bacitracin and sophorolipid supplemented diets (p < 0.05). Dietary zinc bacitracin supplementation could increase the population of Firmicutes in phylum level, and the portion of Turiciacter in genus level. On the other hands, the portion of Faecalibacterium was increased by dietary SPL supplementation compared to the other treatments. Our findings suggest that SPL supplementation improves growth performance through enhanced carbohydrate utilization capacity via improvement of gut morphological status and modulation of the cecal microbial population of broilers.

7.
J Anim Sci Biotechnol ; 12(1): 81, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247658

ABSTRACT

BACKGROUND: Gut is a crucial organ for the host's defense system due to its filtering action of the intestinal membrane from hazardous foreign substances. One strategy to strengthen the gut epithelial barrier function is to upregulate beneficial microflora populations and their metabolites. Sophorolipid (SPL), which is a glycolipid bio-surfactant, could increase beneficial microflora and decrease pathogenic bacteria in the gastrointestinal tract. Therefore, herein, we conducted an experiment with broiler chickens to investigate the fortifying effects of SPL on the host's gut defense system by modulating the microbiota population. METHODS: A total of 540 1-day-old chicks (Ross 308) were used, and they were immediately allotted into three treatment groups (6 replications with 30 chicks/pen) according to their initial body weight. The dietary treatments consisted of CON (basal diet), BAM (10 mg/kg bambermycin), and SPL (10 mg/kg SPL). During the experiment, birds freely accessed feed and water, and body weight and feed intake were measured at the end of each phase. On d 35, birds (one bird/pen) were sacrificed to collect jejunum and cecum samples. RESULTS: Dietary SPL and BAM supplementation significantly accelerated birds' growth and also significantly improved feed efficiency compared to CON. Intestinal microbial community was significantly separated by dietary SPL supplementation from that of CON, and dietary SPL supplementation significantly increased Lactobacillus spp. and Akkermansia muciniphila. Moreover, birds fed with dietary SPL also showed the highest concentration of cecal butyrate among all treatment groups. Gut morphological analysis showed that dietary SPL significantly increased villus height, ratio of villus height to crypt depth, goblet cell numbers, and the gene expression levels of claudin-1 and mucin 2. Additionally, dietary SPL significantly decreased the mRNA expression level of pro-inflammatory cytokine, interleukin-6, and increased that of anti-inflammatory cytokine, interleukin-10, compared to other treatments. CONCLUSIONS: Dietary SPL increases the beneficial bacterial population and butyrate concentration, which leads to a strengthened gut barrier function. In addition, the intestinal inflammation was also downregulated by dietary SPL supplementation.

8.
Vet Med Sci ; 7(4): 1400-1408, 2021 07.
Article in English | MEDLINE | ID: mdl-33764629

ABSTRACT

Early-weaning syndrome is harmful to animals because an effect on growth in the early-stage of life generally determines the overall growth rate. Sophorolipid (SPL), a surface-active glycolipid compound, has been shown to exhibit antimicrobial activity and stimulate cell proliferation. Thus, in vitro and in vivo studies were conducted to evaluate the potential of SPL on the gut turnover after the wound. The in vitro experiment with HT-29 cells showed the increased proliferation with increasing gene levels of collagenase-1 and matrilysin-1. Next, the 16-day in vivo experiment was conducted with thirty rats (14-day-old), and the allocation was performed according to their body weight (BW) into three treatments: control diet (CON), 48 ppm of oxytetracycline-supplemented diet (OTC) and 10 ppm of SPL-supplemented diet (SPL). Dietary SPL accelerates the growth of rats in overall periods, and intestinal permeability was lower in SPL at day 16. Villus:crypt ratio and the goblet cell count were also higher in SPL than in CON at day 8. Caecal Streptococcus spp. were significantly reduced with dietary SPL and OTC at day 8 and 16, and total short-chain fatty acid, acetate and butyrate levels were increased in the SPL at day 8. In conclusion, these data demonstrated that SPL could improve gut remodelling potential and modulate the gut environments, resulted in acceleration of post-weaning growth. Therefore, SPL could have a potential as a feed additive aimed at promoting repair system after wound in animal's gut.


Subject(s)
Oleic Acids/metabolism , Streptococcus/drug effects , Wound Healing , Animal Feed/analysis , Animals , Cecum , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , HT29 Cells , Humans , Intestinal Mucosa , Male , Oleic Acids/administration & dosage , Random Allocation , Rats , Rats, Sprague-Dawley , Weaning
9.
Foods ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477967

ABSTRACT

Whey protein is a by-product of cheese and casein manufacturing processes. It contains highly bioactive molecules, such as epidermal growth factor, colony-stimulating factor, transforming growth factor-α and -ß, insulin-like growth factor, and fibroblast growth factor. Effects of whey protein on immune responses after antigen (hemagglutinin peptide) injection were evaluated in rats. Experimental diets were formulated based on NIH-31M and supplemented with 1% amino acids mixture (CON) or 1% whey protein concentrate (WPC) to generate isocaloric and isonitrogenous diets. Rats were fed the experimental diets for two weeks and then exposed to antigen two times (Days 0 and 14). Blood was collected on Days 0, 7, 14, and 21 for hematological analysis. The WPC group showed decreased IgA and cytotoxic T cells before the antigen injection (Day 0) but increased IgG, IL-2, and IL-4 after antigen injection due to increased B cells and T cells. Helper T cells were increased at Days 14 and 21, but cytotoxic T cells were not affected by WPC. WPC may activate adaptive immunity (IgG) against antigen by modulating helper T cells. Bioactive molecules might contribute to the immune-enhancing effects of whey protein concentrate.

10.
Anim Sci J ; 91(1): e13418, 2020.
Article in English | MEDLINE | ID: mdl-32648357

ABSTRACT

Gastrointestinal microbiota impact host's biological activities, including digestion of indigestible feed components, energy harvest, and immunity. In this study, fecal microbiota of high body weight (HW) and low body weight (LW) growing pigs at 103 days of age were compared. Principal coordinates analysis separated the HW and LW groups into two clusters, indicating their potential differences between microbial community composition. Although the abundances of two major phyla, Firmicutes and Bacteroidetes, did not significantly differ between the HW and LW groups, some genera showed significant differences. Among them, Peptococcus and Eubacterium exhibited strong positive correlations with body weight (BW) and average daily gain (ADG) (Rho > 0.40), whereas Treponema, Desulfovibrio, Parabacteroides, and Ruminococcaceae_unclassified exhibited strong negative correlations with BW and ADG (Rho < -0.40). Based on these results, the structure of intestinal microbiota may affect growth traits in pigs through host-microbe interactions. Further in-depth studies will provide insights into how best to reshape host-microbe interactions in pigs and other animals as well.


Subject(s)
Body Weight , Gastrointestinal Microbiome/physiology , Swine/growth & development , Swine/microbiology , Animals , Eubacterium , Host Microbial Interactions , Peptococcus , Weight Gain
11.
Environ Pollut ; 256: 113421, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31677866

ABSTRACT

Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant that has been used as an additive for fat- or oil-containing foods. The exposure index value increases with extended usage of the chemical. Further, estimated total amount of BHT could exceed standard regulation, considering dietary intake or another exposure. Although BHT may induce side effects in reproductive systems, adequate research had not yet been performed to confirm them. In this study, we investigated the effects of BHT on mouse Leydig cells (TM3), which are components of testis. Our results indicated that BHT suppressed cellular proliferation and induced cell cycle arrest in TM3 cells. Moreover, BHT hampered cytosolic and mitochondrial calcium homeostasis in TM3 cells. Furthermore, BHT treatment led to endoplasmic reticulum (ER) stress and DNA fragmentation, simultaneously stimulating intrinsic apoptosis signal transduction. To elucidate the mode of action of BHT on Leydig cells, we performed western blot analysis and confirmed the activation of the PI3K/AKT and MAPK pathways. Collectively, our results demonstrated that BHT has toxic effects on mouse Leydig cells via induction of calcium dysregulation and ER-mitochondria dysfunction.


Subject(s)
Butylated Hydroxytoluene/toxicity , Calcium/metabolism , Endoplasmic Reticulum Stress/physiology , Environmental Pollutants/toxicity , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Homeostasis/drug effects , Leydig Cells/drug effects , Male , Mice , Phenols/toxicity , Phosphatidylinositol 3-Kinases , Testis/metabolism , Toxicity Tests
12.
Environ Pollut ; 257: 113480, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31744678

ABSTRACT

Etoxazole is an organofluorine insecticide widely used in agriculture. Exposure to insecticides is a serious environmental problem owing to their cytotoxic effects in humans and animals. Reproductive toxicity of various organofluorine insecticides have been shown in previous studies. However, few studies have evaluated the toxicity of etoxazole in mammals. We aimed to examine the toxic effects of etoxazole in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. To estimate the effects of etoxazole, we conducted assays after treatment with multiple concentration of etoxazole (0, 2, 4, 6 and 9 µM) to pTr and pLE cells for 0-72 h. Etoxazole decreased the cell proliferation, viability, and migration of pTr and pLE cells. Further, etoxazole induced apoptosis via cell cycle arrest and disruption of mitochondrial membrane potential. We also found that pro-apoptotic proteins and endoplasmic reticulum (ER) stress-response proteins were activated in response to etoxazole. Finally, we observed that etoxazole altered the PI3K/AKT and MAPK signaling pathways and the mRNA expression of genes associated with implantation. Collectively, these results suggest that etoxazole disrupts normal cellular physiology and might cause early implantation failure.


Subject(s)
Acaricides/toxicity , Oxazoles/toxicity , Animals , Apoptosis/drug effects , Cell Death , Cell Proliferation/drug effects , Embryo Implantation/drug effects , Endoplasmic Reticulum Stress , Epithelial Cells/drug effects , Female , Humans , MAP Kinase Signaling System , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Swine , Uterus/metabolism
13.
Dev Comp Immunol ; 94: 73-84, 2019 05.
Article in English | MEDLINE | ID: mdl-30711450

ABSTRACT

The immune system plays an important role in pregnancy. Chemokines recruit leukocytes at the maternal-fetal interface during early pregnancy. However, the role of the chemokine, C-C motif chemokine ligand 21 (CCL21), is less known. The aim of this study was to identify the expression of CCL21 and its receptor, CCR7, in the endometrium during estrous cycle and early pregnancy, and to investigate the functional effects of CCL21 on porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells. Our results indicated that CCL21 and CCR7 are increased in the glandular (GE) and luminal epithelium (LE) of the endometrium during early pregnancy, compared to estrous pigs. Recombinant CCL21 improved pTr and pLE cell proliferation through activation of the PI3K and MAPK pathways and suppression of tunicamycin-induced endoplasmic reticulum (ER) stress or LPS-induced inflammation. Collectively, these results provide novel insights into CCL21-mediated signaling mechanisms at the maternal-fetal interface during early pregnancy.


Subject(s)
Chemokine CCL21/genetics , Endometrium/physiology , Endoplasmic Reticulum Stress/immunology , Epithelial Cells/physiology , Inflammation/immunology , Pregnancy/immunology , Receptors, CCR7/genetics , Animals , Cell Proliferation , Cells, Cultured , Chemokine CCL21/metabolism , Estrous Cycle , Female , Lipopolysaccharides/immunology , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, CCR7/metabolism , Signal Transduction , Swine , Tunicamycin
14.
J Nutr Biochem ; 63: 87-100, 2019 01.
Article in English | MEDLINE | ID: mdl-30359864

ABSTRACT

Quercetin (3,3',4',5,7-pentahydroxyflavone) is a major dietary flavonol found in diverse fruits and vegetables such as onions, cauliflower, apple skin, lettuce and chili peppers. In recent studies, quercetin is reported as a functional compound and shows a wide range of biological effects such as antioxidant, anti-inflammatory and antiangiogenic properties in obesity, diabetes, cardiovascular diseases and various cancers. However, to date, the therapeutic effect of quercetin on the progression of endometriosis, which is a common gynecological disease in reproductive-aged women and brings chronic pelvic pain and infertility, has not been examined in depth. Results of this study demonstrated that quercetin inhibited the proliferation and induced the cell cycle arrest in VK2/E6E7 and End1/E6E7 cells. Furthermore, it induced cell apoptosis with DNA fragmentation, loss of mitochondrial membrane potential and reactive oxygen species production. The effects accompanied down-regulation of ERK1/2, P38 MAPK and AKT signaling molecules. Additionally, the administration of quercetin indicated antiproliferative and anti-inflammatory effects on endometriosis autoimplanted mouse models. The mRNA expression of Ccnd1 significantly decreased in response to quercetin intraperitoneal injection when compared to that in vehicle-treated mice. The knockdown of CCND1 mRNA attenuated the proliferation with sub-G0/G1 cell cycle arrest and increased the apoptosis of VK2/E6E7 and End1/E6E7 cells. Furthermore, the treatment of quercetin induced miR-503-5p, miR-1283, miR-3714 and miR-6867-5p related to CCND1 in both cell lines and also stimulated miR-503-5p and miR-546 expression in the mouse model. Hence, quercetin may potentially act as a natural therapeutic to reduce and treat human endometriosis.


Subject(s)
Cyclin D1/genetics , Endometriosis/drug therapy , Quercetin/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin D1/metabolism , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , MicroRNAs/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism
15.
J Med Food ; 21(7): 647-653, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29648969

ABSTRACT

Western-style diets increase the risk for cardiovascular diseases. It is suggested that the risk could be prevented by lowering cholesterol concentrations in blood. In the present study, hypocholesterolemic effects of the probiotics isolated from kimchi (Lactobacillus curvatus KFP419, Leuconostoc paramesenteroides KJP421, and Leuconostoc mesenteroide subsp. mesenteroides KDK411) were investigated in hypercholesterolemia-induced rats. There was no difference in growth performance between the rats fed high cholesterol diet (HCD) and normal diet (ND). However, blood total cholesterol, low-density lipoprotein cholesterol, and hepatic cholesterol were elevated by the HCD compared to ND, and those concentrations were decreased by dietary supplementation of KFP419 and KDK411. It was concomitant with an increase in fecal excretion of neutral sterols (cholesterol, coprostanol, and coprostanone) in the rats fed HCD compared to ND and was even greater with KDK411 supplementation. These findings indicate that probiotics L. curvatus KFP419 and L. mesenteroide subsp. mesenteroides KDK411 isolated from kimchi ameliorate hypercholesterolemia in rats by assimilating and excreting cholesterol in feces.


Subject(s)
Anticholesteremic Agents/administration & dosage , Brassica/microbiology , Hypercholesterolemia/drug therapy , Lactobacillus/metabolism , Leuconostoc mesenteroides/metabolism , Probiotics/administration & dosage , Animals , Anticholesteremic Agents/isolation & purification , Anticholesteremic Agents/metabolism , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Humans , Hypercholesterolemia/metabolism , Lactobacillus/genetics , Lactobacillus/isolation & purification , Leuconostoc mesenteroides/genetics , Leuconostoc mesenteroides/isolation & purification , Male , Probiotics/isolation & purification , Probiotics/metabolism , Rats , Rats, Sprague-Dawley , Vegetables/microbiology
16.
Anim Sci J ; 89(2): 412-422, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154473

ABSTRACT

The aim of this study is to investigate the dynamic gut microbial diversity in weaning swine after administering feed supplemented with probiotic bacteria that specifically inhibit the activity of quorum molecules. Initially, the universal quorum molecule autoinducer-2 (AI-2) bioassay results indicated that AI-2 activity was profoundly inhibited in enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the presence of Lactobacillus acidophilus strain 30SC cell extract, although the growth of EHEC was not affected. Based on plate counting results, bacterial community analysis revealed a specific reduction in coliforms compared to the control, whereas the population of lactobacilli increased in weaning swine in in vivo trials. Supplementation with L. acidophilus strain 30SC did not affect the counts of other communities, such as total aerobes and yeast/mold. In addition, PCR-denaturing gradient gel electrophoresis analysis showed a significant difference in the 16S rRNA gene products after administering L. acidophilus strain 30SC. Selected bands were sequenced, and most of them were identified as uncultured bacterium clones or a Lactobacillus- and Bifidobacterium-specific community. Therefore, our results indicate that quorum-quenching probiotic bacteria can significantly modulate the gut microbiota of swine and these beneficial effects can contribute to the improvement of performance and health in the gastrointestinal tract of weaning pigs.


Subject(s)
Escherichia coli O157/growth & development , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Lactobacillus acidophilus/physiology , Probiotics/administration & dosage , Quorum Sensing/physiology , Swine/immunology , Swine/microbiology , Animals , Homoserine/analogs & derivatives , Lactones , Male , RNA, Ribosomal, 16S , Weaning
17.
J Sci Food Agric ; 97(15): 5176-5185, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28437004

ABSTRACT

BACKGROUND: Most countries have banned the use of 4,4'-dichlorodiphenyltrichloroethane (DDT). However, owing to its extremely high lipophilic characteristics, DDT and its metabolite 4,4'-dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and in many types of food. The positive correlation between exposure to insecticides, including DDT and DDE, and weight gain, resulting in impaired energy metabolism in offspring following perinatal DDT and DDE exposure, was previously reported. Therefore the influence of DDT and DDE on myogenesis using C2C12 myoblasts was investigated in this study. RESULTS: DDT and DDE decreased myotube formation dose- and time-dependently. Among myogenic regulatory factors, DDT and DDE mainly decreased MyoD1 and Myf5 expression. DDT and DDE treatment also altered Myostatin expression, phosphorylation of protein kinase B, p70 ribosomal protein S6 kinase, forkhead box O protein 3 and mammalian target of rapamycin, resulting in attenuation of myotube formation. CONCLUSION: These results may have significant implications for understanding the effects of developmental exposure of DDT and DDE on myogenesis and development of obesity and type 2 diabetes later in life. © 2017 Society of Chemical Industry.


Subject(s)
DDT/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Insecticides/toxicity , Muscle Development/drug effects , Myoblasts/cytology , Animals , Cell Line , Gene Expression/drug effects , Mice , MyoD Protein/genetics , MyoD Protein/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism
18.
Biosci Biotechnol Biochem ; 80(11): 2093-2099, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27442219

ABSTRACT

Myogenesis occurs in both the prenatal and postnatal periods and the prenatal myogenesis is related to the postnatal myogenesis and the incidence of disease later in life. Glucocorticoids used as therapeutic agents for many diseases, but cause adverse effects on muscle homeostasis, including defects in fetal muscle development. The action of glucocorticoids on differentiated skeletal muscle was well studied, but their effects on myotube formation have not been well investigated. Dexamethasone (DEX) and cortisone (COR), two synthetic therapeutic glucocorticoids, suppress myotube formation in C2C12 cells. Both COR and DEX attenuated myotube formation through modulation of myogenic regulatory factors. In addition, they affected the IGF/PI3K/AKT/mTOR signaling pathway, resulting in increased proteolytic protein (atrogin-1 and MURF1) for muscle degradation and decreased ribosomal S6 phosphorylation. The current results conclude that COR and DEX inhibit myotube formation in C2C12 cells by modulating both the myogenic program via MRFs and protein metabolism via IGF/PI3K/AKT/mTOR signaling pathway.

19.
Pestic Biochem Physiol ; 131: 40-5, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27265825

ABSTRACT

4,4'-Dichlorodiphenyltrichloroethane (DDT), a chlorinated hydrocarbon insecticide, was extensively used in the 1940s and 1950s. DDT is mainly metabolically converted into 4,4'-dichlorodiphenyldichloroethylene (DDE). Even though most countries banned DDT in the 1970s, due to the highly lipophilic nature and very stable characteristics, DDT and its metabolites are present ubiquitously in the environment, including food. Recently, there are publications on relationships between exposure to insecticides, including DDT and DDE, and weight gain and altered glucose homeostasis. However, there are limited reports regarding DDT or DDE and adipogenesis, thus we investigated effects of DDT and DDE on adipogenesis using 3T3-L1 adipocytes. Treatment of DDT or DDE resulted in increased lipid accumulation accompanied by increased expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome-proliferator activated receptor-γ (PPARγ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase, and leptin. Moreover, treatment of DDT or DDE increased protein levels of C/EBPα, PPARγ, AMP-activated protein kinase-α (AMPKα), and ACC, while significant decrease of phosphorylated forms of AMPKα and ACC were observed. These finding suggest that increased lipid accumulation caused by DDT and DDE may mediate AMPKα pathway in 3T3-L1 adipocytes.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , DDT/pharmacology , Dichlorodiphenyl Dichloroethylene/pharmacology , 3T3 Cells/chemistry , 3T3 Cells/drug effects , Adipocytes/chemistry , Animals , Immunoblotting , Mice , Triglycerides/analysis
20.
Lipids ; 51(2): 159-78, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26729488

ABSTRACT

Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.


Subject(s)
Energy Metabolism , Linoleic Acids, Conjugated/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...