Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Respir Res ; 25(1): 86, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336805

ABSTRACT

BACKGROUND: Bronchopulmonary Dysplasia (BPD) in infants born prematurely is a risk factor for chronic airway obstruction later in life. The distribution of T cell subtypes in the large airways is largely unknown. OBJECTIVE: To characterize cellular and T cell profiles in the large airways of young adults with a history of BPD. METHODS: Forty-three young adults born prematurely (preterm (n = 20), BPD (n = 23)) and 45 full-term-born (asthma (n = 23), healthy (n = 22)) underwent lung function measurements, and bronchoscopy with large airway bronchial wash (BW). T-cells subsets in BW were analyzed by immunocytochemistry. RESULTS: The proportions of both lymphocytes and CD8 + T cells in BW were significantly higher in BPD (median, 6.6%, and 78.0%) when compared with asthma (3.4% and 67.8%, p = 0.002 and p = 0.040) and healthy (3.8% and 40%, p < 0.001 and p < 0.001). In all adults born prematurely (preterm and BPD), lymphocyte proportion correlated negatively with forced vital capacity (r= -0.324, p = 0.036) and CD8 + T cells correlated with forced expiratory volume in one second, FEV1 (r=-0.448, p = 0.048). Correlation-based network analysis revealed that lung function cluster and BPD-birth cluster were associated with lymphocytes and/or CD4 + and CD8 + T cells. Multivariate regression analysis showed that lymphocyte proportions and BPD severity qualified as independent factors associated with FEV1. CONCLUSIONS: The increased cytotoxic T cells in the large airways in young adults with former BPD, suggest a similar T-cell subset pattern as in the small airways, resembling features of COPD. Our findings strengthen the hypothesis that mechanisms involving adaptive and innate immune responses are involved in the development of airway disease due to preterm birth.


Subject(s)
Asthma , Bronchopulmonary Dysplasia , Premature Birth , Pulmonary Disease, Chronic Obstructive , Infant , Female , Young Adult , Humans , Infant, Newborn , Bronchopulmonary Dysplasia/diagnosis , Forced Expiratory Volume/physiology , Respiratory Function Tests , Asthma/complications , Pulmonary Disease, Chronic Obstructive/complications
2.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686350

ABSTRACT

Aberrant mucus secretion is a hallmark of chronic obstructive pulmonary disease (COPD). Expression of the membrane-tethered mucins 3A and 3B (MUC3A, MUC3B) in human lung is largely unknown. In this observational cross-sectional study, we recruited subjects 45-65 years old from the general population of Stockholm, Sweden, during the years 2007-2011. Bronchial mucosal biopsies, bronchial brushings, and bronchoalveolar lavage fluid (BALF) were retrieved from COPD patients (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). Protein expression of MUC3A and MUC3B in bronchial mucosal biopsies was assessed by immunohistochemical staining. In a subgroup of subjects (n = 28), MUC3A and MUC3B mRNAs were quantified in bronchial brushings using microarray. Non-parametric tests were used to perform correlation and group comparison analyses. A value of p < 0.05 was considered statistically significant. MUC3A and MUC3B immunohistochemical expression was localized to ciliated cells. MUC3B was also expressed in basal cells. MUC3A and MUC3B immunohistochemical expression was equal in all study groups but subjects with emphysema had higher MUC3A expression, compared to those without emphysema. Smokers had higher mRNA levels of MUC3A and MUC3B than non-smokers. MUC3A and MUC3B mRNA were higher in male subjects and correlated negatively with expiratory air flows. MUC3B mRNA correlated positively with total cell concentration and macrophage percentage, and negatively with CD4/CD8 T cell ratio in BALF. We concluded that MUC3A and MUC3B in large airways may be a marker of disease or may play a role in the pathophysiology of airway obstruction.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Humans , Male , Middle Aged , Aged , Epithelium , Thorax , Pulmonary Disease, Chronic Obstructive/genetics , Mucins/genetics
3.
Front Public Health ; 11: 1150095, 2023.
Article in English | MEDLINE | ID: mdl-37143970

ABSTRACT

Background: The global COVID-19 pandemic is still ongoing, and cross-country and cross-period variation in COVID-19 age-adjusted case fatality rates (CFRs) has not been clarified. Here, we aimed to identify the country-specific effects of booster vaccination and other features that may affect heterogeneity in age-adjusted CFRs with a worldwide scope, and to predict the benefit of increasing booster vaccination rate on future CFR. Method: Cross-temporal and cross-country variations in CFR were identified in 32 countries using the latest available database, with multi-feature (vaccination coverage, demographic characteristics, disease burden, behavioral risks, environmental risks, health services and trust) using Extreme Gradient Boosting (XGBoost) algorithm and SHapley Additive exPlanations (SHAP). After that, country-specific risk features that affect age-adjusted CFRs were identified. The benefit of booster on age-adjusted CFR was simulated by increasing booster vaccination by 1-30% in each country. Results: Overall COVID-19 age-adjusted CFRs across 32 countries ranged from 110 deaths per 100,000 cases to 5,112 deaths per 100,000 cases from February 4, 2020 to Jan 31, 2022, which were divided into countries with age-adjusted CFRs higher than the crude CFRs and countries with age-adjusted CFRs lower than the crude CFRs (n = 9 and n = 23) when compared with the crude CFR. The effect of booster vaccination on age-adjusted CFRs becomes more important from Alpha to Omicron period (importance scores: 0.03-0.23). The Omicron period model showed that the key risk factors for countries with higher age-adjusted CFR than crude CFR are low GDP per capita and low booster vaccination rates, while the key risk factors for countries with higher age-adjusted CFR than crude CFR were high dietary risks and low physical activity. Increasing booster vaccination rates by 7% would reduce CFRs in all countries with age-adjusted CFRs higher than the crude CFRs. Conclusion: Booster vaccination still plays an important role in reducing age-adjusted CFRs, while there are multidimensional concurrent risk factors and precise joint intervention strategies and preparations based on country-specific risks are also essential.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Risk Factors , Cost of Illness , Vaccination
4.
Front Public Health ; 11: 1052946, 2023.
Article in English | MEDLINE | ID: mdl-36761122

ABSTRACT

Background: Ninety-eight percent of documented cases of the zoonotic disease human monkeypox (MPX) were reported after 2001, with especially dramatic global spread in 2022. This longitudinal study aimed to assess spatiotemporal risk factors of MPX infection and predict global epidemiological trends. Method: Twenty-one potential risk factors were evaluated by correlation-based network analysis and multivariate regression. Country-level risk was assessed using a modified Susceptible-Exposed-Infectious-Removed (SEIR) model and a risk-factor-driven k-means clustering analysis. Results: Between historical cases and the 2022 outbreak, MPX infection risk factors changed from relatively simple [human immunodeficiency virus (HIV) infection and population density] to multiple [human mobility, population of men who have sex with men, coronavirus disease 2019 (COVID-19) infection, and socioeconomic factors], with human mobility in the context of COVID-19 being especially key. The 141 included countries classified into three risk clusters: 24 high-risk countries mainly in West Europe and Northern America, 70 medium-risk countries mainly in Latin America and Asia, and 47 low-risk countries mainly in Africa and South Asia. The modified SEIR model predicted declining transmission rates, with basic reproduction numbers ranging 1.61-7.84 in the early stage and 0.70-4.13 in the current stage. The estimated cumulative cases in Northern and Latin America may overtake the number in Europe in autumn 2022. Conclusions: In the current outbreak, risk factors for MPX infection have changed and expanded. Forecasts of epidemiological trends from our modified SEIR models suggest that Northern America and Latin America are at greater risk of MPX infection in the future.


Subject(s)
COVID-19 , HIV Infections , Mpox (monkeypox) , Sexual and Gender Minorities , Male , Humans , Pandemics , Homosexuality, Male , COVID-19/epidemiology , Mpox (monkeypox)/epidemiology , Longitudinal Studies , HIV Infections/epidemiology , Disease Outbreaks
5.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38205966

ABSTRACT

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Subject(s)
Asthma , Multiomics , Adult , Humans , Consensus , Cluster Analysis , Algorithms , Asthma/genetics
6.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38221905

ABSTRACT

BACKGROUND: Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients. METHODS: We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naïve Bayes and Quadratic Discriminant Analysis (QDA). RESULTS: In the Lanzhou cohort, SVM and Naïve Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods. CONCLUSION: Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naïve Bayes-QDA model offers a precise approach to managing PVT in this population.


Subject(s)
Portal Vein , Venous Thrombosis , Humans , Portal Vein/pathology , Risk Factors , Bayes Theorem , Precision Medicine , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Fibrosis , Venous Thrombosis/complications , Venous Thrombosis/diagnosis
7.
Front Genet ; 13: 1010048, 2022.
Article in English | MEDLINE | ID: mdl-36468026

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments. Objectives: To investigate the miRNA-mRNA-protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women. Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA-mRNA-protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology. Conclusion: For the first time, a comprehensive miRNA-mRNA-protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.

8.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36219822

ABSTRACT

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Subject(s)
Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Tandem Mass Spectrometry/methods , Chromatography, Reverse-Phase , Oxylipins , Solvents , Carbon
9.
Eur Respir J ; 60(3)2022 09.
Article in English | MEDLINE | ID: mdl-35210327

ABSTRACT

RATIONALE: Bronchopulmonary dysplasia (BPD) in preterm-born infants is a risk factor for chronic airway obstruction in adulthood. Cytotoxic T-cells are implicated in COPD, but their involvement in BPD is not known. OBJECTIVES: To characterise the distribution of airway T-cell subsets in adults with a history of BPD. METHODS: Young adults with former BPD (n=22; median age 19.6 years), age-matched adults born preterm (n=22), patients with allergic asthma born at term (n=22) and healthy control subjects born at term (n=24) underwent bronchoalveolar lavage (BAL). T-cell subsets in BAL were analysed using flow cytometry. RESULTS: The total number of cells and the differential cell counts in BAL were similar among the study groups. The percentage of CD3+CD8+ T-cells was higher (p=0.005) and the proportion of CD3+CD4+ T-cells was reduced (p=0.01) in the BPD group, resulting in a lower CD4/CD8 ratio (p=0.007) compared to the healthy controls (median 2.2 versus 5.3). In BPD and preterm-born study subjects, both CD3+CD4+ T-cells (rs=0.38, p=0.03) and CD4/CD8 ratio (rs=0.44, p=0.01) correlated positively with forced expiratory volume in 1 s (FEV1). Furthermore, CD3+CD8+ T-cells were negatively correlated with both FEV1 and FEV1/forced vital capacity (rs= -0.44, p=0.09 and rs= -0.41, p=0.01, respectively). CONCLUSIONS: Young adults with former BPD have a T-cell subset pattern in the airways resembling features of COPD. Our findings are compatible with the hypothesis that CD3+CD8+ T-cells are involved in mechanisms behind chronic airway obstruction in these patients.


Subject(s)
Airway Obstruction , Bronchopulmonary Dysplasia , Pulmonary Disease, Chronic Obstructive , Adult , CD8-Positive T-Lymphocytes , Forced Expiratory Volume , Humans , Infant, Newborn , Young Adult
10.
Eur Respir J ; 59(6)2022 06.
Article in English | MEDLINE | ID: mdl-34824054

ABSTRACT

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/genetics , Carnitine/therapeutic use , Cross-Sectional Studies , Humans , Severity of Illness Index , Solute Carrier Family 22 Member 5
12.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34864875

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.


Subject(s)
COVID-19 , Genomics , Pandemics , SARS-CoV-2 , Systems Biology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
13.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948231

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model's applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.


Subject(s)
Biomarkers/metabolism , Cellular Microenvironment/physiology , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Aged , Chemokine CCL7/metabolism , Chemokine CXCL13/metabolism , Female , Fibroblasts/metabolism , Humans , Interleukin-6/metabolism , Male , Matrix Metalloproteinase 7/metabolism , Middle Aged , Proteomics/methods , TWEAK Receptor/metabolism , Vascular Endothelial Growth Factor A/metabolism
14.
Anal Chem ; 93(12): 5248-5258, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33739820

ABSTRACT

Urine is a noninvasive biofluid that is rich in polar metabolites and well suited for metabolomic epidemiology. However, because of individual variability in health and hydration status, the physiological concentration of urine can differ >15-fold, which can pose major challenges in untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Although numerous urine normalization methods have been implemented (e.g., creatinine, specific gravity-SG), most are manual and, therefore, not practical for population-based studies. To address this issue, we developed a method to measure SG in 96-well-plates using a refractive index detector (RID), which exhibited accuracy within 85-115% and <3.4% precision. Bland-Altman statistics showed a mean deviation of -0.0001 SG units (limits of agreement: -0.0014 to 0.0011) relative to a hand-held refractometer. Using this RID-based SG normalization, we developed an automated LC-MS workflow for untargeted urinary metabolomics in a 96-well-plate format. The workflow uses positive and negative ionization HILIC chromatography and acquires mass spectra in data-independent acquisition (DIA) mode at three collision energies. Five technical internal standards (tISs) were used to monitor data quality in each method, all of which demonstrated raw coefficients of variation (CVs) < 10% in the quality controls (QCs) and < 20% in the samples for a small cohort (n = 87 urine samples, n = 22 QCs). Application in a large cohort (n = 842 urine samples, n = 248 QCs) demonstrated CVQC < 5% and CVsamples < 16% for 4/5 tISs after signal drift correction by cubic spline regression. The workflow identified >540 urinary metabolites including endogenous and exogenous compounds. This platform is suitable for performing urinary untargeted metabolomic epidemiology and will be useful for applications in population-based molecular phenotyping.


Subject(s)
Body Fluids , Metabolomics , Chromatography, Liquid , Humans , Mass Spectrometry , Workflow
15.
Respir Res ; 22(1): 40, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546682

ABSTRACT

BACKGROUND: Observational data under real-life conditions in idiopathic pulmonary fibrosis (IPF) is scarce. We explored anti-fibrotic treatment, disease severity and phenotypes in patients with IPF from the Swedish IPF Registry (SIPFR). METHODS: Patients enrolled between September 2014 and April 2020 and followed ≥ 6 months were investigated. Demographics, comorbidities, lung function, composite variables, six-minute walking test (6MWT), quality of life, and anti-fibrotic therapy were evaluated. Agreements between classification of mild physiological impairment (defined as gender-age-physiology (GAP) stage 1) with physiological and composite measures of severity was assessed using kappa values and their impact on mortality with hazard ratios. The factor analysis and the two-step cluster analysis were used to identify phenotypes. Univariate and multivariable survival analyses were performed between variables or groups. RESULTS: Among 662 patients with baseline data (median age 72.7 years, 74.0% males), 480 had a follow up ≥ 6 months with a 5 year survival rate of 48%. Lung function, 6MWT, age, and BMI were predictors of survival. Patients who received anti-fibrotic treatment ≥ 6 months had better survival compared to untreated patients [p = 0.007, HR (95% CI): 1.797 (1.173-2.753)] after adjustment of age, gender, BMI, smoking status, forced vital capacity (FVC) and diffusion capacity of carbon monoxide (DLCO). Patients with mild physiological impairment (GAP stage 1, composite physiological index (CPI) ≤ 45, DLCO ≥ 55%, FVC ≥ 75%, and total lung capacity (TLC) ≥ 65%, respectively) had better survival, after adjustment for age, gender, BMI and smoking status and treatment. Patients in cluster 1 had the worst survival and consisted mainly of male patients with moderate-severe disease and an increased prevalence of heart diseases at baseline; Cluster 2 was characterized by mild disease with more than 50% females and few comorbidities, and had the best survival; Cluster 3 were younger, with moderate-severe disease and had few comorbidities. CONCLUSION: Disease severity, phenotypes, and anti-fibrotic treatment are closely associated with the outcome in IPF, with treated patients surviving longer. Phenotypes may contribute to predicting outcomes of patients with IPF and suggest the patients' need for special management, whereas single or composite variables have some limitations as disease predictors.


Subject(s)
Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/mortality , Registries , Aged , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Female , Follow-Up Studies , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Longitudinal Studies , Male , Middle Aged , Protein Kinase Inhibitors/administration & dosage , Survival Rate/trends , Sweden/epidemiology , Vital Capacity/drug effects , Vital Capacity/physiology
16.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32667261

ABSTRACT

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Subject(s)
Asthma/metabolism , Biomarkers/urine , Inflammation/metabolism , Leukotriene E4/metabolism , Leukotriene E4/urine , Prostaglandins/metabolism , Prostaglandins/urine , Adult , Asthma/physiopathology , Female , Humans , Inflammation/physiopathology , Male , Middle Aged
18.
Environ Int ; 146: 106248, 2021 01.
Article in English | MEDLINE | ID: mdl-33212358

ABSTRACT

Air pollution has been associated with adverse health effects across the life-course. Although underlying mechanisms are unclear, several studies suggested pollutant-induced changes in transcriptomic profiles. In this meta-analysis of transcriptome-wide association studies of 656 children and adolescents from three European cohorts participating in the MeDALL Consortium, we found two differentially expressed transcript clusters (FDR p < 0.05) associated with exposure to particulate matter < 2.5 µm in diameter (PM2.5) at birth, one of them mapping to the MIR1296 gene. Further, by integrating gene expression with DNA methylation using Functional Epigenetic Modules algorithms, we identified 9 and 6 modules in relation to PM2.5 exposure at birth and at current address, respectively (including NR1I2, MAPK6, TAF8 and SCARA3). In conclusion, PM2.5 exposure at birth was linked to differential gene expression in children and adolescents. Importantly, we identified several significant interactome hotspots of gene modules of relevance for complex diseases in relation to PM2.5 exposure.


Subject(s)
Air Pollutants , Air Pollution , Adolescent , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Child , DNA Methylation , Environmental Exposure/analysis , Epigenomics , Humans , Particulate Matter/analysis , Particulate Matter/toxicity
19.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33290275

ABSTRACT

The pathogenesis of chronic obstructive pulmonary disease (COPD) involves aberrant responses to cellular stress caused by chronic cigarette smoke (CS) exposure. However, not all smokers develop COPD and the critical mechanisms that regulate cellular stress responses to increase COPD susceptibility are not understood. Because microRNAs are well-known regulators of cellular stress responses, we evaluated microRNA expression arrays performed on distal parenchymal lung tissue samples from 172 subjects with and without COPD. We identified miR-24-3p as the microRNA that best correlated with radiographic emphysema and validated this finding in multiple cohorts. In a CS exposure mouse model, inhibition of miR-24-3p increased susceptibility to apoptosis, including alveolar type II epithelial cell apoptosis, and emphysema severity. In lung epithelial cells, miR-24-3p suppressed apoptosis through the BH3-only protein BIM and suppressed homology-directed DNA repair and the DNA repair protein BRCA1. Finally, we found BIM and BRCA1 were increased in COPD lung tissue, and BIM and BRCA1 expression inversely correlated with miR-24-3p. We concluded that miR-24-3p, a regulator of the cellular response to DNA damage, is decreased in COPD, and decreased miR-24-3p increases susceptibility to emphysema through increased BIM and apoptosis.


Subject(s)
Apoptosis/genetics , DNA Damage/genetics , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Aged , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Cell Line , Cigarette Smoking/adverse effects , Cohort Studies , DNA Repair , Disease Models, Animal , Disease Susceptibility , Female , Humans , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred AKR , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Middle Aged , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
20.
Respir Res ; 21(1): 239, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948202

ABSTRACT

RATIONALE: Smoking-related chronic obstructive pulmonary disease (COPD) is associated with dysregulated production of mucus. Mucins (MUC) are important both for mucus secretion and epithelial defense. We have examined the distribution of MUC1 and MUC4 in the airway epithelial cells of never-smokers and smokers with and without COPD. METHODS: Mucosal biopsies and bronchial wash samples were obtained by bronchoscopy from age- and sex-matched COPD-patients (n = 38; GOLD I-II/A-B), healthy never-smokers (n = 40) and current smokers with normal lung function (n = 40) from the Karolinska COSMIC cohort (NCT02627872). Cell-specific expressions of MUC1, MUC4 and regulating factors, i.e., epithelial growth factor receptor (EGFR) 1 and 2, were analyzed by immunohistochemistry. Soluble MUC1 was measured by quantitative immunodetection on slot blot. RESULTS: The levels of cell-bound MUC1 expression in basal cells and in soluble MUC1 in bronchial wash were increased in smokers, regardless of airway obstruction. Patients with chronic bronchitis had higher MUC1 expression. The expression of MUC4 in cells with goblet cell phenotype was increased in smokers. The expression of EGFR2, but not that of EGFR1, was higher in never-smokers than in smokers. CONCLUSIONS: Smoking history and the presence of chronic bronchitis, regardless of airway obstruction, affect both cellular and soluble MUC1 in human airways. Therefore, MUC1 may be a novel marker for smoking- associated airway disease.


Subject(s)
Bronchoscopy/methods , Mucin-1/biosynthesis , Mucin-4/biosynthesis , Respiratory Mucosa/metabolism , Smoking/metabolism , Aged , Bronchitis/diagnosis , Bronchitis/epidemiology , Bronchitis/metabolism , Female , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology , Smoking/adverse effects , Smoking/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...