Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30450, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711655

ABSTRACT

Complications associated with Type 1 diabetes (T1D) have complex origins that revolve around chronic hyperglycemia; these complications involve hemostasis disorders, coagulopathies, and vascular damage. Our study aims to develop innovative approaches to minimize these complications and to compare the outcomes of the new approach with those of traditional methods. To achieve our objective, we designed novel nanoparticles comprising covalent organic frameworks (nCOF) loaded with insulin, termed nCOF/Insulin, and compared it to subcutaneous insulin to elucidate the influence of insulin delivery methods on various parameters, including bleeding time, coagulation factors, platelet counts, cortisol plasma levels, lipid profiles, and oxidative stress parameters. Traditional subcutaneous insulin injections exacerbated hemostasis disorder and vascular injuries in streptozotocin (STZ)-induced diabetic rats through increasing plasma triglycerides and lipid peroxidation. Conversely, oral delivery of nCOF/Insulin ameliorated hemostatic disorders and restored the endothelial oxidant/antioxidant balance by reducing lipid peroxidation and enhancing the lipid profile. Our study pioneers the understanding of how STZ-induced diabetes disrupts bleeding time, induces a hypercoagulable state, and causes vascular damage through lipid peroxidation. Additionally, it provides the first evidence for the involvement of subcutaneous insulin treatment in exacerbating vascular and hemostasis disorders in type 1 diabetes (T1D). Introducing an innovative oral insulin delivery via the nCOF approach represents a potential paradigm shift in diabetes management and patient care and promises to improve treatment strategies for type 1 Diabetes.

2.
Chem Sci ; 12(17): 6037-6047, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33995999

ABSTRACT

With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.

3.
J Am Chem Soc ; 142(44): 18782-18794, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33090806

ABSTRACT

Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.


Subject(s)
Ferric Compounds/chemistry , Imines/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Carriers/chemistry , Embryo, Nonmammalian/drug effects , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Hyperthermia, Induced , Magnetic Resonance Imaging , Polylysine/chemistry , Porosity , Temperature , Zebrafish/growth & development
4.
Chemistry ; 26(23): 5270-5279, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32077541

ABSTRACT

Triphenylphosphine (TPP) surface-functionalized and F-108 Pluronic-stabilized gold nanoparticles (F-108@TPP-AuNPs) have been synthesized through a one-step approach, leading to well-defined (9.6±1.6 nm) and water-soluble nanoparticles by microwave heating an aqueous solution of TPP-AuI Cl in the presence of a Pluronic polymer under basic conditions. TPP release was negligible under physiological conditions, but enhanced significantly at an acidic pH (5.4) mimicking that of a cancer cell. Laser irradiation (532 nm) raised the temperature of an aqueous solution of F-108@TPP-AuNPs to 51.7 °C within 5 min, confirming efficient light-to-heat conversion capabilities without significant photodegradation. TEM confirmed intracellular localization of F-108@TPP-AuNPs in the cytosol, endosomes and lysosomes of HeLa cells. F-108@TPP-AuNPs were well tolerated by HeLa cells and zebrafish embryos at ambient temperatures and became toxic upon heat activation, suggesting synergistic interactions between heat and cytotoxic action by TPP.


Subject(s)
Antineoplastic Agents/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Organophosphorus Compounds/chemistry , Antineoplastic Agents/chemistry , HeLa Cells , Humans , Phototherapy , Polymers/chemistry , Temperature
5.
Langmuir ; 33(25): 6248-6257, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28553982

ABSTRACT

The propensity for adherence to solid surfaces of asphaltenes, a complex solubility class of heteropolycyclic aromatic compounds from the heavy fraction of crude oil, has long been the root cause of scale deposition and remains an intractable problem in the petroleum industry. Although the adhesion is essential to understanding the process of asphaltene deposition, the relationship between the conformation of asphaltene molecules on mineral substrates and its impact on adhesion and mechanical properties of the deposits is not completely understood. To rationalize the primary processes in the process of organic scale deposition, here we use atomic force microscopy (AFM) to visualize the morphology of petroleum asphaltenes deposited on model mineral substrates. High imaging contrast was achieved by the differential adhesion of the tip between asphaltenes and the mineral substrate. While asphaltenes form smooth continuous films on all substrates at higher concentrations, they deposit as individual nanoparticles at lower concentrations. The size, shape, and spatial distribution of the nanoaggregates are strongly affected by the nature of the substrate; while uniformly distributed spherical particles are formed on highly polar and hydrophilic substrates (mica), irregular islands and thicker patches are observed with substrates of lower polarity (silica and calcite). Asphaltene nanoparticles flatten when adsorbed on highly oriented pyrolytic graphite due to π-π interactions with the polycyclic core. Force-distance profiles provide direct evidence of the conformational changes of asphaltene molecules on hydrophilic/hydrophobic substrates that result in dramatic changes in adhesion and mechanical properties of asphaltene deposits. Such an understanding of the nature of adhesion and mechanical properties tuned by surface properties, on the level of asphaltene nanoaggregates, would contribute to the design of efficient asphaltene inhibitors for preventing asphaltene fouling on targeted surfaces. Unlike flat surfaces, the AFM phase contrast images of defected calcite surfaces show that asphaltenes form continuous deposits to fill the recesses, and this process could trigger the onset for asphaltene deposition.

6.
Phys Chem Chem Phys ; 14(39): 13684-91, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22968657

ABSTRACT

The current study extends our work with spiropyran-merocyanines (SP-MC) as molecular photoswitches by delving into the effects of viscosity. This has led to the interesting finding of a dichotomy in viscosity dependence. Solutions of SP [6'-nitro-1,3,3-trimethylspiro(indolino-2,2'-benzopyran)] in a wide range of ethylene glycol-methanol (EG-MeOH) media (3.59 to 17.9 M in EG) were irradiated 90 s (365 nm). The absorbance at 90 s of MC (532 nm) formed photolytically varied with solvent. The least viscous medium yielded the highest concentration of MC and yields declined with increasing viscosity. Once irradiation ceased each system achieved thermal equilibrium. Molecular dynamics studies of typical thermal reactions governed by electronic and steric factors show that the transition state is achieved primarily after solvent reorganization has occurred to accommodate the new structure. It follows that in such thermal reactions viscosity may not cause any hindrance to the motion of atoms in molecules because solvent has already rearranged. In contrast, photochemical excitations occur at much higher rates (10(-15) s) than solvent reorganization, i.e. dielectric relaxation (10(-10) to 10(-12) s). The viscosity dependence of photochemical MC formation suggests that a major geometrical change is required for excited SP to be converted to MC. The dichotomy in dependence on viscosity is confirmed by the thermal equilibration of SP and MC. The equilibrium constant for the process increases three-fold (from 0.0535 to 0.158) as the EG content of the medium increases. However, the forward rate constant (SP → MC) is almost invariant with EG content or viscosity. The process is viscosity independent. The increase in the equilibrium constant with EG concentration is a result of a decline in the reverse rate constant for MC cyclisation to SP. This is attributed to special stabilisation of the MC that increases with increasing EG concentration. The present study, to our knowledge, is the first to dissect viscosity from solvent stabilisation factors in SP-MC systems. Further, the study highlights the fundamental difference between photolytic and thermal processes, providing another avenue of control for these SP-MC photoswitches.


Subject(s)
Benzopyrans/chemistry , Indoles/chemistry , Nitro Compounds/chemistry , Temperature , Ethylene Glycol/chemistry , Methanol/chemistry , Molecular Dynamics Simulation , Molecular Structure , Photochemical Processes , Viscosity
7.
J Phys Chem A ; 113(24): 6640-7, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19456113

ABSTRACT

We have investigated the model light harvesting systems (LHSs) A and B typifying energy transfer (ET) between a naphthalene, Np (donor, D), and an azobenzene, Az (acceptor, A), shown schematically in Scheme 2 . These models were actualized as the naphthyl azo molecules 1 and 4 containing a methylene tether (Scheme 1). The methoxy azo molecules 2 and 5, respectively, served as benchmarks for the assessment of ET. Photophysical data, including initial rate constants for photoisomerization (trans to cis, t-1 --> c-1, and cis to trans, c-1 --> t-1), the relevant c-1 --> t-1 quantum yields, and fluorescence quenching with free naphthalene, 3, as D were measured. Therefore, (1) irradiation of 3 at (270 nm) to give 3* generates fluorescence at 340 nm that is 65% quenched by the trans isomer of 2 (t-2) and 15% quenched by c-2. Comparable naphthalenic fluorescence of c-1 (LH model A) is quenched beyond detectability. (2) Rates of photoisomerization were determined spectrophotometrically for c-1 --> t-1 starting from the c-1 photostationary state as compared with the c-2 --> t-2 benchmark. (3) Progressing toward more complex LH systems, the initial rate constants, k(i), for c-4 --> t-4 (LH model B), were measured as compared with the c-5 --> t-5 benchmark. (4) A new criterion for ET (D --> A) efficiency emerges that combines k(i) (c --> t) ratios and light absorption on irradiation (at 270 nm) ratios. On the basis of this new criterion, both 1 and 4 exhibit virtually quantitative ET efficiency. (5) Quenching data of 1 (almost complete) and 4 (95%) and ET are discussed by comparison with the relevant model azoarenes, 2 and 5, respectively, and in terms of geometrical considerations. Implications for the extension of the results, notably the new criterion for ET efficiency, in these LH models A and B to the polymer and block copolymer D-(CRR')(n)-A and D-(CRR')(n)-A-(CR''R''')(m)-D targets are considered.


Subject(s)
Azo Compounds/chemistry , Light , Naphthalenes/chemistry , Energy Transfer/radiation effects , Fluorescence , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...