Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Gait Posture ; 103: 196-202, 2023 06.
Article in English | MEDLINE | ID: mdl-37245333

ABSTRACT

BACKGROUND: Patients after total hip arthroplasty (THA) have altered hip kinematics compared to healthy controls, specifically hip extension and range of motion are lower. Exploring pelvis-thigh coordination patterns and coordination variability may help to elucidate why differences in hip kinematics are evident in patients following THA. RESEARCH QUESTION: Do sagittal plane hip, pelvis and thigh kinematics, and pelvis-thigh movement coordination and coordination variability differ between patients following THA and healthy controls during walking? METHODS: Sagittal plane hip, pelvis and thigh kinematics were collected using a three-dimensional motion capture system while 10 patients who had undergone THA and 10 controls walked at a self-selected pace. A modified vector coding technique was used to quantify pelvis-thigh coordination and coordination variability patterns. Peak hip, pelvis and thigh kinematics and ranges of motion, and movement coordination and coordination variability patterns were quantified and compared between groups. RESULTS: Patients after THA have significantly (p ≤ .036; g ≥ 0.995) smaller peak hip extension and range of motion, and peak thigh anterior tilt and range of motion compared to controls. Additionally, patients following THA have significantly (p ≤ .037; g ≥ 0.646) more in-phase distally and less anti-phase distally dominated pelvis-thigh movement coordination patterns compared to controls. SIGNIFICANCE: The smaller peak hip extension and range of motion displayed by patients following THA is due to smaller peak anterior tilt of the thigh, which in turn limits thigh range of motion. The lower sagittal plane thigh, and in turn hip, motion used by patients after THA may be due to increases in the in-phase coordination of pelvis-thigh motion patterns, which cause the pelvis and thigh to work as a singular functional unit.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Thigh , Walking , Pelvis , Lower Extremity/surgery , Biomechanical Phenomena , Range of Motion, Articular , Hip Joint/surgery
2.
Hip Int ; 33(2): 247-253, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34496218

ABSTRACT

BACKGROUND: Total hip arthroplasty (THA) patients have been shown to not achieve normal sagittal plane hip kinematics. However, previous studies have only conducted group level analysis and as such lack the sensitivity to highlight whether individual patients do achieve normal hip kinematics. As such this study looked to determine whether some patients with well-functioning THA achieve typical sagittal plane hip kinematics. METHODS: Sagittal plane hip kinematics were collected on 11 well-functioning THA patients (Oxford Hip Score = 46 ± 3) and 10 asymptomatic controls using a 3-dimensional motion analysis system during self-paced walking. High-functioning THA patients were identified as those who displayed sagittal plane hip kinematics that were within the variance of the control group on average, and low-functioning patients as those who did not. RESULTS: 5 THA patients were identified as high-functioning, displaying hip kinematics within the variance of the control group. High-functioning THA patients displayed peak hip flexion and extension values more closely aligned to asymptomatic control group than low-functioning patients. However, hip range of motion was comparable between high- and low-functioning total hip arthroplasty patients and reduced compared to controls. CONCLUSION: The presence of high-functioning THA patients who display comparable sagittal plane hip kinematics to controls suggests these patients do achieve normative function and challenges the conclusions of previous group level analysis. Understanding why some patients achieve better function post-operatively will aid pre- and post-operative practices to maximise functional recovery.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Hip Joint/surgery , Biomechanical Phenomena , Proof of Concept Study , Gait , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL