Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662826

ABSTRACT

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Subject(s)
Axoneme , Centrioles , Cilia , Ciliary Motility Disorders , Tubulin , Animals , Humans , Mice , Axoneme/metabolism , Centrioles/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tubulin/genetics , Tubulin/metabolism , Male , Female , Mice, Knockout
2.
Ann Hum Genet ; 88(1): 45-57, 2024 01.
Article in English | MEDLINE | ID: mdl-37771269

ABSTRACT

Most mammalian cells have a single primary cilium that acts as a signalling hub in mediating cellular functions. However, little is known about the mechanisms that result in aberrant supernumerary primary cilia per cell. In this study, we re-analysed a previously published whole-genome siRNA-based reverse genetic screen for genes mediating ciliogenesis to identify knockdowns that permit multi-ciliation. We identified siRNA knockdowns that caused significant formation of supernumerary cilia, validated candidate hits in different cell-lines and confirmed that RACGAP1, a component of the centralspindlin complex, was the strongest candidate hit at the whole-genome level. Following loss of RACGAP1, mother centrioles were specified correctly prior to ciliogenesis and the cilia appeared normal. Live cell imaging revealed that increased cilia incidence was caused by cytokinesis failure which led to the formation of multinucleate cells with supernumerary cilia. This suggests that the signalling mechanisms for ciliogenesis are unable to identify supernumerary centrosomes and therefore allow ciliation of duplicated centrosomes as if they were in a new diploid daughter cell. These results, demonstrating that aberrant ciliogenesis is de-coupled from cell cycle regulation, have functional implications in diseases marked by centrosomal amplification.


Subject(s)
Cilia , Cytokinesis , GTPase-Activating Proteins , Animals , Humans , Centrioles/metabolism , Centrosome/metabolism , Cilia/genetics , Cilia/metabolism , Mammals/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , GTPase-Activating Proteins/metabolism
3.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37077557

ABSTRACT

Background: Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. Methods: Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. Results: 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median -1.90 (-5.0-1.32)) and growth was mostly within the normal range (z-score mean -0.36 (-3.03-2.57). 19% individuals had finger clubbing. Conclusions: Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity.

4.
Clin Genet ; 103(3): 330-334, 2023 03.
Article in English | MEDLINE | ID: mdl-36273371

ABSTRACT

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Subject(s)
Ciliopathies , Humans , Syndrome , Ciliopathies/genetics , Proteins/genetics , Kidney , Mutation , Cilia/genetics
5.
Front Immunol ; 13: 988685, 2022.
Article in English | MEDLINE | ID: mdl-36203591

ABSTRACT

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


Subject(s)
COVID-19 , COVID-19/genetics , ErbB Receptors , Gene Expression , Humans , Intensive Care Units , PPAR alpha , Pandemics , Transforming Growth Factor beta
6.
Front Genet ; 13: 1009430, 2022.
Article in English | MEDLINE | ID: mdl-36176300

ABSTRACT

Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment. Here we use CRISPR and base edited PRPF6 and PRPF31 mutant cell lines, and publicly-available data from human PRPF31 +/- patient derived retinal organoids and PRPF31 siRNA-treated organotypic retinal cultures to confirm an enrichment of differential splicing of microtubule, centrosomal, cilium and DNA damage response pathway genes in these cells. We show that genes with microtubule/centrosome/centriole/cilium gene ontology terms are enriched for weak 3' and 5' splice sites, and that subtle defects in spliceosome activity predominantly affect efficiency of splicing of these exons. We suggest that the primary defect in PRPF6 or PRPF31 mutant cells is microtubule and centrosomal defects, leading to defects in cilium and mitotic spindle stability, with the latter leading to DNA damage, triggering differential splicing of DNA damage response genes to activate this pathway. Finally, we expand understanding of "splicing factor RP" by investigating the function of TTLL3, one of the most statistically differentially expressed genes in PRPF6 and PRPF31 mutant cells. We identify that TTLL3 is the only tubulin glycylase expressed in the human retina, essential for monoglycylation of microtubules of the cilium, including the retinal photoreceptor cilium, to prevent cilium degeneration and retinal degeneration. Our preliminary data suggest that rescue of tubulin glycylation through overexpression of TTLL3 is sufficient to rescue cilium number in PRPF6 and PRPF31 mutant cells, suggesting that this defect underlies the cellular defect and may represent a potential target for therapeutic intervention in this group of disorders.

7.
Reprod Fertil ; 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35971960

ABSTRACT

Endometrial glands are essential for fertility, consisting of ciliated and secretory cells that facilitate a suitable uterine environment for embryo implantation. This study sought to determine whether an endometrial gland specific transcriptome and splicing profile are altered in women with recurrent pregnancy loss. Our data provide a comprehensive catalogue of cilia and PAEP gene isoforms and relative exon usage in endometrial glands. We report a previously unannotated endometrial gland cilia transcript GALNT11 and its susceptibility to exon skipping. Key endometrial receptivity gene transcripts are also reported to change in endometrial glands of women with recurrent pregnancy loss. The endometrial gland cilia and PAEP targets identified in this study could be used to identify a perturbed endometrium, isolate causes of recurrent pregnancy loss and develop targeted therapies in personalised medicine.

8.
Front Cell Dev Biol ; 10: 907511, 2022.
Article in English | MEDLINE | ID: mdl-35784475

ABSTRACT

Air-liquid interface (ALI) cell culture of primary airway progenitors enables the differentiation and recapitulation of a pseudostratified epithelium in vitro, providing a highly useful tool for researching respiratory health and disease. Previous studies into gene expression in ALI-cultures compared to ex vivo nasal brushings have been limited in the number of time-points and/or the number of genes studied. In this study physiological and global transcriptomic changes were assessed in an extended in vitro 63-day human healthy nasal epithelium ALI-culture period and compared to ex vivo nasal brushing samples. Ex vivo nasal brushing samples formed distinct transcriptome clusters to in vitro ALI-cultured nasal epithelia, with from day 14 onwards ALI samples best matching the ex vivo samples. Immune response regulation genes were not expressed in the in vitro ALI-culture compared to the ex vivo nasal brushing samples, likely because the in vitro cultures lack an airway microbiome, lack airborne particles stimulation, or did not host an immune cell component. This highlights the need for more advanced co-cultures with immune cell representation to better reflect the physiological state. During the first week of ALI-culture genes related to metabolism and proliferation were increased. By the end of week 1 epithelial cell barrier function plateaued and multiciliated cell differentiation started, although widespread ciliation was not complete until day 28. These results highlight that time-points at which ALI-cultures are harvested for research studies needs to be carefully considered to suit the purpose of investigation (transcriptomic and/or functional analysis).

9.
Biochim Biophys Acta Gene Regul Mech ; 1865(5): 194848, 2022 07.
Article in English | MEDLINE | ID: mdl-35905858

ABSTRACT

Histone modifying enzymes are involved in the posttranslational modification of histones and the epigenetic control of gene expression. They play a critical role in normal development, and there is increasing evidence of their role in developmental disorders (DDs). DDs are a group of chronic, severe conditions that impact the physical, intellectual, language and/or behavioral development of an individual. There are very few treatment options available for DDs such that these are conditions with significant unmet clinical need. Recessive variants in the gene encoding histone modifying enzyme KDM5B are associated with a DD characterized by developmental delay, facial dysmorphism and camptodactyly. KDM5B is responsible for the demethylation of lysine 4 on the amino tail of histone 3 and plays a vital role in normal development and regulating cell differentiation. This review explores the literature on KDM5B and what is currently known about its roles in development and developmental disorders.


Subject(s)
Histones , Jumonji Domain-Containing Histone Demethylases , Child , Developmental Disabilities/genetics , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
10.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35675825

ABSTRACT

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Subject(s)
Neurodevelopmental Disorders , Receptors, AMPA , Cohort Studies , Heterozygote , Humans , Mutation, Missense , Neurodevelopmental Disorders/genetics , Receptors, AMPA/genetics
11.
Front Immunol ; 13: 853265, 2022.
Article in English | MEDLINE | ID: mdl-35663963

ABSTRACT

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and peripheral blood were acquired upon hospital admission from two well characterised cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular composition were compared between cohorts using RNA-seq. A genetic signature between COVID-19 survivors and non-survivors was assessed as a prognostic predictor of COVID-19 outcome. Contrasting immune responses were detected with an innate response elevated in influenza and an adaptive response elevated in COVID-19. Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways differentiated the cohorts. An adaptive immune response was associated with COVID-19 survival, while an inflammatory response predicted death. A prognostic transcript signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine production and T cell activation, was able to stratify COVID-19 patients likely to survive or die. This study provides a unique insight into the immune responses of treatment naïve patients with influenza or COVID-19. The comparison of immune response between COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and may suggest potential therapeutic strategies to improve survival.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adaptive Immunity , Humans , Pandemics , SARS-CoV-2
12.
Eur Respir J ; 60(5)2022 11.
Article in English | MEDLINE | ID: mdl-35728977

ABSTRACT

BACKGROUND: Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS: This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS: Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS: PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.


Subject(s)
Bronchiectasis , Ciliary Motility Disorders , Ciliopathies , Kartagener Syndrome , Humans , Mutation , Bronchiectasis/diagnosis , Bronchiectasis/genetics , Cilia , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/genetics , Ciliopathies/complications , Kartagener Syndrome/diagnosis , Kartagener Syndrome/genetics
13.
J Med Genet ; 59(12): 1151-1164, 2022 12.
Article in English | MEDLINE | ID: mdl-35764379

ABSTRACT

BACKGROUND: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS: We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION: Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.


Subject(s)
Bardet-Biedl Syndrome , Ciliopathies , Humans , Antigens, Neoplasm , Bardet-Biedl Syndrome/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Ciliopathies/diagnosis , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Genotype , Microtubule-Associated Proteins/genetics , Phenotype , State Medicine , Genome, Human
15.
Elife ; 112022 02 16.
Article in English | MEDLINE | ID: mdl-35170427

ABSTRACT

Primary ciliary defects cause a group of developmental conditions known as ciliopathies. Here, we provide mechanistic insight into ciliary ubiquitin processing in cells and for mouse model lacking the ciliary protein Mks1. In vivo loss of Mks1 sensitises cells to proteasomal disruption, leading to abnormal accumulation of ubiquitinated proteins. We identified UBE2E1, an E2 ubiquitin-conjugating enzyme that polyubiquitinates ß-catenin, and RNF34, an E3 ligase, as novel interactants of MKS1. UBE2E1 and MKS1 colocalised, and loss of UBE2E1 recapitulates the ciliary and Wnt signalling phenotypes observed during loss of MKS1. Levels of UBE2E1 and MKS1 are co-dependent and UBE2E1 mediates both regulatory and degradative ubiquitination of MKS1. We demonstrate that processing of phosphorylated ß-catenin occurs at the ciliary base through the functional interaction between UBE2E1 and MKS1. These observations suggest that correct ß-catenin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and a regulatory substrate-adaptor (MKS1).


Subject(s)
Ciliopathies/metabolism , Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Wnt Signaling Pathway , Animals , Cilia/metabolism , Humans , Mice , Mice, Knockout , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , beta Catenin/metabolism
16.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-34996831

ABSTRACT

BACKGROUND: Severe asthma is associated with multiple comorbidities, including gastro-oesophageal reflux disease (GORD), which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux. METHODS: We developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH and bile acids using a multiple challenge protocol (MCP-PAB). In addition, we analysed bronchial biopsies and undertook RNA sequencing of bronchial brushings from controls and severe asthmatics without or with GORD. RESULTS: Exposure of BECs to the MCP-PAB caused structural disruption, increased permeability, interleukin (IL)-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses. CONCLUSIONS AND CLINICAL IMPLICATION: By affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


Subject(s)
Asthma , Gastroesophageal Reflux , Bronchi/pathology , Epithelium/metabolism , Gastroesophageal Reflux/complications , Humans , Quality of Life , Respiratory Mucosa/metabolism
17.
J Med Genet ; 59(8): 737-747, 2022 08.
Article in English | MEDLINE | ID: mdl-34716235

ABSTRACT

BACKGROUND: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS: Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS: We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION: These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.


Subject(s)
Abnormalities, Multiple , Ciliopathies , Eye Abnormalities , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Ciliopathies/diagnosis , Ciliopathies/genetics , Ciliopathies/pathology , Eye Abnormalities/genetics , Humans , Kidney Diseases, Cystic/genetics , Phenotype , State Medicine
18.
Mol Biol Cell ; 32(22): br13, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34613793

ABSTRACT

Cilia are microtubule-based organelles with important functions in motility and sensation. They contribute to a broad spectrum of developmental disorders called ciliopathies and have recently been linked to common conditions such as cancers and congenital heart disease. There has been increasing interest in the biology of cilia and their contribution to disease over the past two decades. In 2013 we published a "Gold Standard" list of genes confirmed to be associated with cilia. This was published as part of the SYSCILIA consortium for systems biology study dissecting the contribution of cilia to human health and disease, and was named the Syscilia Gold Standard (SCGS). Since this publication, interest in cilia and understanding of their functions have continued to grow, and we now present an updated SCGS version 2. This includes an additional 383 genes, more than doubling the size of SCGSv1. We use this dataset to conduct a review of advances in understanding of cilia biology 2013- 2021 and offer perspectives on the future of cilia research. We hope that this continues to be a useful resource for the cilia community.


Subject(s)
Cilia/genetics , Ciliopathies/genetics , Aging/genetics , Autophagy/genetics , Chromatin/genetics , Databases, Genetic , Datasets as Topic , Humans
19.
BMC Med Genomics ; 14(1): 234, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556108

ABSTRACT

BACKGROUND: It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms. Mutations in > 50 genes account for around 70% of cases, with additional genes, and non-coding, synonymous, missense changes or structural variants (SVs) in known genes presumed to account for the missing heritability. METHODS: UK patients with no identified genetic confirmation for the cause of their PCD or bronchiectasis were eligible for whole genome sequencing (WGS) in the Genomics England Ltd 100,000 Genomes Project. 21 PCD probands and 52 non-cystic fibrosis (CF) bronchiectasis probands were recruited in Wessex Genome Medicine Centre (GMC). We carried out analysis of single nucleotide variants (SNVs) and SVs in all families recruited in Wessex GMC. RESULTS: 16/21 probands in the PCD cohort received confirmed (n = 9), probable (n = 4) or possible (n = 3) diagnosis from WGS, although 13/16 of these could have been picked up by current standard of care gene panel testing. In the other cases, SVs were identified which were missed by panel testing. We identified variants in novel PCD candidate genes (IFT140 and PLK4) in 2 probands in the PCD cohort. 3/52 probands in the non-CF bronchiectasis cohort received a confirmed (n = 2) or possible (n = 1) diagnosis of PCD. We identified variants in novel PCD candidate genes (CFAP53 and CEP164) in 2 further probands in the non-CF bronchiectasis cohort. CONCLUSIONS: Genetic testing is an important component of diagnosing PCD, especially in cases of atypical disease history. WGS is effective in cases where prior gene panel testing has found no variants or only heterozygous variants. In these cases it may detect SVs and is a powerful tool for novel gene discovery.


Subject(s)
Ciliary Motility Disorders
20.
Genome Med ; 13(1): 34, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632302

ABSTRACT

BACKGROUND: Coat protein complex 1 (COPI) is integral in the sorting and retrograde trafficking of proteins and lipids from the Golgi apparatus to the endoplasmic reticulum (ER). In recent years, coat proteins have been implicated in human diseases known collectively as "coatopathies". METHODS: Whole exome or genome sequencing of two families with a neuro-developmental syndrome, variable microcephaly and cataracts revealed biallelic variants in COPB1, which encodes the beta-subunit of COPI (ß-COP). To investigate Family 1's splice donor site variant, we undertook patient blood RNA studies and CRISPR/Cas9 modelling of this variant in a homologous region of the Xenopus tropicalis genome. To investigate Family 2's missense variant, we studied cellular phenotypes of human retinal epithelium and embryonic kidney cell lines transfected with a COPB1 expression vector into which we had introduced Family 2's mutation. RESULTS: We present a new recessive coatopathy typified by severe developmental delay and cataracts and variable microcephaly. A homozygous splice donor site variant in Family 1 results in two aberrant transcripts, one of which causes skipping of exon 8 in COPB1 pre-mRNA, and a 36 amino acid in-frame deletion, resulting in the loss of a motif at a small interaction interface between ß-COP and ß'-COP. Xenopus tropicalis animals with a homologous mutation, introduced by CRISPR/Cas9 genome editing, recapitulate features of the human syndrome including microcephaly and cataracts. In vitro modelling of the COPB1 c.1651T>G p.Phe551Val variant in Family 2 identifies defective Golgi to ER recycling of this mutant ß-COP, with the mutant protein being retarded in the Golgi. CONCLUSIONS: This adds to the growing body of evidence that COPI subunits are essential in brain development and human health and underlines the utility of exome and genome sequencing coupled with Xenopus tropicalis CRISPR/Cas modelling for the identification and characterisation of novel rare disease genes.


Subject(s)
Alleles , Cataract/genetics , Coatomer Protein/genetics , Genetic Variation , Intellectual Disability/genetics , Microcephaly/genetics , Adolescent , Amino Acid Sequence , Animals , Animals, Genetically Modified , Child , Coatomer Protein/chemistry , Family , Female , Humans , Male , Mutation, Missense/genetics , Pedigree , Syndrome , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...