Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512414

ABSTRACT

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Subject(s)
CpG Islands , DNA Methylation , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Animals , Mice , CpG Islands/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Transgenic , DNA Methyltransferase 3A/metabolism , Humans , Insulin/metabolism , Insulin Secretion/physiology
2.
Dev Cell ; 59(6): 695-704.e5, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38359835

ABSTRACT

Primordial germ cells (PGCs) are the earliest precursors of the gametes. During normal development, PGCs only give rise to oocytes or spermatozoa. However, PGCs can acquire pluripotency in vitro by forming embryonic germ (EG) cells and in vivo during teratocarcinogenesis. Classic embryological experiments directly assessed the potency of PGCs by injection into the pre-implantation embryo. As no contribution to embryos or adult mice was observed, PGCs have been described as unipotent. Here, we demonstrate that PGCs injected into 8-cell embryos can initially survive, divide, and contribute to the developing inner cell mass. Apoptosis-deficient PGCs exhibit improved survival in isolated epiblasts and can form naive pluripotent embryonic stem cell lines. However, contribution to the post-implantation embryo is limited, with no functional incorporation observed. In contrast, PGC-like cells show an extensive contribution to mid-gestation chimeras. We thus propose that PGC formation in vivo establishes a latent form of pluripotency that restricts chimera contribution.


Subject(s)
Germ Cells , Pluripotent Stem Cells , Male , Mice , Animals , Germ Cells/metabolism , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Spermatozoa , Germ Layers , Cell Differentiation
3.
Biochem J ; 481(5): 345-362, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38314646

ABSTRACT

Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Leptin/genetics , Leptin/pharmacology , Leptin/metabolism
4.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076935

ABSTRACT

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "ßHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.

5.
Sci Rep ; 13(1): 5626, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024615

ABSTRACT

Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing.


Subject(s)
DNA Methylation , Histone Deacetylase Inhibitors , Animals , Mice , Genomic Imprinting , Epigenesis, Genetic , Chromatin , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism
6.
Cell Rep ; 42(4): 112396, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37061917

ABSTRACT

Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.


Subject(s)
AMP-Activated Protein Kinases , Prostatic Neoplasms , Male , Humans , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Lipogenesis , Lipid Metabolism , Prostatic Neoplasms/pathology
7.
Nat Struct Mol Biol ; 30(4): 489-501, 2023 04.
Article in English | MEDLINE | ID: mdl-36941433

ABSTRACT

Recent studies have shown that repressive chromatin machinery, including DNA methyltransferases and polycomb repressor complexes, binds to chromosomes throughout mitosis and their depletion results in increased chromosome size. In the present study, we show that enzymes that catalyze H3K9 methylation, such as Suv39h1, Suv39h2, G9a and Glp, are also retained on mitotic chromosomes. Surprisingly, however, mutants lacking histone 3 lysine 9 trimethylation (H3K9me3) have unusually small and compact mitotic chromosomes associated with increased histone H3 phospho Ser10 (H3S10ph) and H3K27me3 levels. Chromosome size and centromere compaction in these mutants were rescued by providing exogenous first protein lysine methyltransferase Suv39h1 or inhibiting Ezh2 activity. Quantitative proteomic comparisons of native mitotic chromosomes isolated from wild-type versus Suv39h1/Suv39h2 double-null mouse embryonic stem cells revealed that H3K9me3 was essential for the efficient retention of bookmarking factors such as Esrrb. These results highlight an unexpected role for repressive heterochromatin domains in preserving transcription factor binding through mitosis and underscore the importance of H3K9me3 for sustaining chromosome architecture and epigenetic memory during cell division.


Subject(s)
Proteomics , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Histones/metabolism , Heterochromatin , DNA Methylation , Mitosis , Polycomb-Group Proteins/genetics , Methyltransferases/metabolism
8.
Nat Commun ; 13(1): 4342, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896525

ABSTRACT

Innate immune responses rely on inducible gene expression programmes which, in contrast to steady-state transcription, are highly dependent on cohesin. Here we address transcriptional parameters underlying this cohesin-dependence by single-molecule RNA-FISH and single-cell RNA-sequencing. We show that inducible innate immune genes are regulated predominantly by an increase in the probability of active transcription, and that probabilities of enhancer and promoter transcription are coordinated. Cohesin has no major impact on the fraction of transcribed inducible enhancers, or the number of mature mRNAs produced per transcribing cell. Cohesin is, however, required for coupling the probabilities of enhancer and promoter transcription. Enhancer-promoter coupling may not be explained by spatial proximity alone, and at the model locus Il12b can be disrupted by selective inhibition of the cohesinopathy-associated BET bromodomain BD2. Our data identify discrete steps in enhancer-mediated inducible gene expression that differ in cohesin-dependence, and suggest that cohesin and BD2 may act on shared pathways.


Subject(s)
Chromosomal Proteins, Non-Histone , Enhancer Elements, Genetic , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/genetics , Probability , RNA , Cohesins
9.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471149

ABSTRACT

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.


Subject(s)
Cell Cycle Proteins , Chromatin , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , Gene Expression , Mice , Neurons/metabolism , Cohesins
10.
Genes Dev ; 36(5-6): 331-347, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35273077

ABSTRACT

Upon fertilization, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice this involves the transient up-regulation of MERVL transposons and MERVL-driven genes at the two-cell stage. The mechanisms and requirement for MERVL and two-cell (2C) gene up-regulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow two-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and two-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking RNA polymerase I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper nucleolar maturation and Dux silencing and leads to two- to four-cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation, and gene repression during early development.


Subject(s)
Cell Nucleolus , Embryo, Mammalian , Animals , Cell Nucleolus/genetics , Embryonic Development/genetics , Embryonic Stem Cells , Genome , Mammals/genetics , Mice , RNA, Ribosomal/genetics
11.
J Immunol ; 207(12): 2976-2991, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34810221

ABSTRACT

RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.


Subject(s)
B-Lymphocytes , Core Binding Factor Alpha 2 Subunit , Animals , B-Lymphocytes/metabolism , Cell Cycle/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis , Mice , Promoter Regions, Genetic
12.
Mol Biol Cell ; 32(22): ar40, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34613789

ABSTRACT

Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.


Subject(s)
Aurora Kinase B/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mouse Embryonic Stem Cells/cytology , Transcription Factors/metabolism , A549 Cells , Animals , Aurora Kinase B/genetics , Cell Differentiation/physiology , Cell Survival , Cells, Cultured , Endoderm/cytology , Endoderm/physiology , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Humans , Mesoderm/cytology , Mice , Mouse Embryonic Stem Cells/physiology , Mutation , Phosphorylation , Transcription Factors/genetics
13.
Clin Sci (Lond) ; 135(20): 2393-2408, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34622923

ABSTRACT

AMP-activated protein kinase (AMPK) plays a key role in the cellular response to low energy stress and has emerged as an attractive therapeutic target for tackling metabolic diseases. Whilst significant progress has been made regarding the physiological role of AMPK, its function in the kidney remains only partially understood. We use a mouse model expressing a constitutively active mutant of AMPK to investigate the effect of AMPK activation on kidney function in vivo. Kidney morphology and changes in gene and protein expression were monitored and serum and urine markers were measured to assess kidney function in vivo. Global AMPK activation resulted in an early-onset polycystic kidney phenotype, featuring collecting duct cysts and compromised renal function in adult mice. Mechanistically, the cystic kidneys had increased cAMP levels and ERK activation, increased hexokinase I (Hk I) expression, glycogen accumulation and altered expression of proteins associated with autophagy. Kidney tubule-specific activation of AMPK also resulted in a polycystic phenotype, demonstrating that renal tubular AMPK activation caused the cystogenesis. Importantly, human autosomal dominant polycystic kidney disease (ADPKD) kidney sections revealed similar protein localisation patterns to that observed in the murine cystic kidneys. Our findings show that early-onset chronic AMPK activation leads to a polycystic kidney phenotype, suggesting dysregulated AMPK signalling is a contributing factor in cystogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Kidney/enzymology , Polycystic Kidney Diseases/enzymology , AMP-Activated Protein Kinases/genetics , Adult , Age Factors , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclic AMP/metabolism , Energy Metabolism , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Genetic Predisposition to Disease , Hexokinase/metabolism , Humans , Kidney/pathology , Male , Mice, Transgenic , Phenotype , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/enzymology , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Signal Transduction
14.
Nat Commun ; 12(1): 1980, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790300

ABSTRACT

The majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these 'SLE-like' conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Gene Expression Profiling/methods , Interferon Type I/immunology , Lupus Erythematosus, Systemic/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Female , Humans , Interferon Type I/metabolism , Interferon Type I/pharmacology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Metabolic Networks and Pathways/genetics , Middle Aged , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Young Adult
15.
Nat Commun ; 11(1): 4118, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807789

ABSTRACT

Epigenetic information is transmitted from mother to daughter cells through mitosis. Here, to identify factors that might play a role in conveying epigenetic memory through cell division, we report on the isolation of unfixed, native chromosomes from metaphase-arrested cells using flow cytometry and perform LC-MS/MS to identify chromosome-bound proteins. A quantitative proteomic comparison between metaphase-arrested cell lysates and chromosome-sorted samples reveals a cohort of proteins that were significantly enriched on mitotic ESC chromosomes. These include pluripotency-associated transcription factors, repressive chromatin-modifiers such as PRC2 and DNA methyl-transferases, and proteins governing chromosome architecture. Deletion of PRC2, Dnmt1/3a/3b or Mecp2 in ESCs leads to an increase in the size of individual mitotic chromosomes, consistent with de-condensation. Similar results were obtained by the experimental cleavage of cohesin. Thus, we identify chromosome-bound factors in pluripotent stem cells during mitosis and reveal that PRC2, DNA methylation and Mecp2 are required to maintain chromosome compaction.


Subject(s)
Chromatin/metabolism , Chromosomes/metabolism , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , DNA Methyltransferase 3A , Fluorescent Antibody Technique , Methyl-CpG-Binding Protein 2/metabolism , Mice , Proteomics , DNA Methyltransferase 3B
16.
Curr Biol ; 30(7): 1217-1230.e7, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32059768

ABSTRACT

Cell size varies during the cell cycle and in response to external stimuli. This requires the tight coordination, or "scaling," of mRNA and protein quantities with the cell volume in order to maintain biomolecule concentrations and cell density. Evidence in cell populations and single cells indicates that scaling relies on the coordination of mRNA transcription rates with cell size. Here, we use a combination of single-molecule fluorescence in situ hybridization (smFISH), time-lapse microscopy, and mathematical modeling in single fission yeast cells to uncover the precise molecular mechanisms that control transcription rates scaling with cell size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a normal cell cycle. Transcription of both constitutive and periodic genes is a Poisson process with transcription rates scaling with cell size and without evidence for transcriptional off states. Modeling and experimental data indicate that scaling relies on the coordination of RNA polymerase II (RNAPII) transcription initiation rates with cell size and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size increase is accompanied by a rapid concentration-independent recruitment of RNAPII onto chromatin. Finally, we find that, in multinucleated cells, scaling is set at the level of single nuclei and not the entire cell, making the nucleus a determinant of scaling. Integrating our observations in a mechanistic model of RNAPII-mediated transcription, we propose that scaling of gene expression with cell size is the consequence of competition between genes for limiting RNAPII.


Subject(s)
RNA Polymerase II/genetics , RNA, Fungal/genetics , Schizosaccharomyces/physiology , Transcription, Genetic , RNA Polymerase II/metabolism , RNA, Fungal/metabolism , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...