Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Ibis, v. 163, n. 2, p. 380-389, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3412

ABSTRACT

The Common Potoo Nyctibius griseus is abundant, charismatic and generally considered to be sedentary across its range. Using citizen science data from eBird and WikiAves, we demonstrate that the Common Potoo may be a partial migrant whose breeding populations depart southeastern Brazil, Uruguay and northern Argentina in May to August during the region’s austral winter. MaxEnt models revealed that spatio‐temporal shifts in Common Potoo distributions were driven by seasonal changes in temperature and precipitation. We examined potential seasonal detection biases by restricting our analysis to daytime observations and testing for seasonally dependent shifts in distribution for two nocturnal non‐migratory species. Our results provide the first evidence of migration for any member of the family Nyctibiidae. Our approach exposes the potential value that WikiAves data offer towards elucidating seasonal movements of South American birds.

3.
Risk Anal ; 39(6): 1262-1280, 2019 06.
Article in English | MEDLINE | ID: mdl-30468695

ABSTRACT

In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk-informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard-independent social vulnerability index for the local population; (2) developing a location-specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS-based socio-technical risk map by combining the social vulnerability index and the location-specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio-technical risk. The methodology is applied using results from the 2012 Surry Power Station state-of-the-art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location-specific SVI themes based on their influence on risk, providing input for EPPR.


Subject(s)
Disaster Planning/methods , Geographic Information Systems , Radiation Injuries/prevention & control , Radioactive Hazard Release/prevention & control , Risk Assessment/methods , Air Pollutants, Radioactive , Emergencies , Environment , Geography , Human Activities , Humans , Models, Theoretical , Nuclear Power Plants , Probability , Virginia
4.
Ecol Appl ; 28(8): 2142-2152, 2018 12.
Article in English | MEDLINE | ID: mdl-30198191

ABSTRACT

Environment and human land use both shape forest composition. Abiotic conditions sift tree species from a regional pool via functional traits that influence species' suitability to the local environment. In addition, human land use can modify species distributions and change functional diversity of forests. However, it is unclear how environment and land use simultaneously shape functional diversity of tree communities. Land-use legacies are especially prominent in temperate forest landscapes that have been extensively modified by humans in the last few centuries. Across a 900-ha temperate deciduous forest in the northeastern United States, comprising a mosaic of different-aged stands due to past human land use, we used four key functional traits-maximum height, rooting depth, wood density, and seed mass-to examine how multiple environmental and land-use variables influenced species distributions and functional diversity. We sampled ~40,000 trees >8 cm DBH within 485 plots totaling 137 ha. Species within plots were more functionally similar than expected by chance when we estimated functional diversity using all traits together (multi-trait), and to a lesser degree, with each trait separately. Multi-trait functional diversity was most strongly correlated with distance from the perennial stream, elevation, slope, and forest age. Environmental and land-use predictors varied in their correlation with functional diversities of the four individual traits. Landscape-wide change in abundances of individual species also correlated with both environment and land-use variables, but magnitudes of trait-environment interactions were generally stronger than trait interactions with land use. These findings can be applied for restoration and assisted regeneration of human-modified temperate forests by using traits to predict which tree species would establish well in relation to land-use history, topography, and soil conditions.


Subject(s)
Biodiversity , Environment , Forests , Trees , Agriculture , Forestry , Pennsylvania , Trees/growth & development
5.
Ecology ; 96(3): 705-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26236867

ABSTRACT

Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and land-use history variables, are important drivers of community response. The large amount of "unexplained" variation seen here (about 50%) is commonly observed in other such studies attempting to explain distribution and abundance patterns of plant communities. Determining whether such large fractions of unaccounted for variation are caused by a lack of sufficient data, or are an indication of stochastic features of forest communities globally, will remain an important challenge for ecologists in the future.


Subject(s)
Biodiversity , Forests , Trees/physiology , Agriculture , Environment , Forestry , Mining , Pennsylvania
6.
PLoS One ; 10(6): e0128161, 2015.
Article in English | MEDLINE | ID: mdl-26046534

ABSTRACT

Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.


Subject(s)
Berberis/physiology , Rosa/physiology , Agriculture , Ecosystem , Introduced Species , Mining , United States
7.
Artif Life ; 19(3-4): 365-86, 2013.
Article in English | MEDLINE | ID: mdl-23834594

ABSTRACT

The capacity to adapt can greatly influence the success of systems that need to compensate for damaged parts, learn how to achieve robust performance in new environments, or exploit novel opportunities that originate from new technological interfaces or emerging markets. Many of the conditions in which technology is required to adapt cannot be anticipated during its design stage, thus creating a challenge for the designer. Inspired by the study of a range of biological systems, we propose that degeneracy-the realization of multiple, functionally versatile components with contextually overlapping functional redundancy-will support adaptation in technologies, because it effects pervasive flexibility, evolutionary innovation, and homeostatic robustness. We provide examples of degeneracy in a number of rudimentary living technologies, from military sociotechnical systems to swarm robotics, and we present design principles-including shared protocols, loose regulatory coupling, and functional versatility-that allow degeneracy to arise in both biological and man-made systems.


Subject(s)
Bioengineering/methods , Models, Biological
8.
Nurs Res Pract ; 2013: 581012, 2013.
Article in English | MEDLINE | ID: mdl-23577243

ABSTRACT

This meta-analysis assessed how successfully Diabetes Self-Management Education (DSME) interventions help people with type 2 diabetes achieve and maintain healthy blood glucose levels. We included 52 DSME programs with 9,631 participants that reported post-intervention A1c levels in randomized controlled trials. The training conditions resulted in significant reductions in A1c levels compared to control conditions. However, the impact of intervention was modest shifting of only 7.23% more participants from diabetic to pre-diabetic or normal status, relative to the control condition. Most intervention participants did not achieve healthy A1c levels. Further, few DSME studies assessed long-term maintenance of A1c gains. Past trends suggest that gains are difficult to sustain over time. Our results suggested that interventions delivered by nurses were more successful than those delivered by non-nursing personnel. We suggest that DSME programs might do better by going beyond procedural interventions. Most DSME programs relied heavily on rules and procedures to guide decisions about diet, exercise, and weight loss. Future DSME may need to include cognitive self-monitoring, diagnosis, and planning skills to help patients detect anomalies, identify possible causes, generate corrective action, and avoid future barriers to maintaining healthy A1c levels. Finally, comprehensive descriptions of DSME programs would advance future efforts.

9.
Nat Comput ; 11(3): 431-448, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22962549

ABSTRACT

Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.

10.
Biosystems ; 110(1): 34-42, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22910487

ABSTRACT

Trait diversity - the substrate for natural selection - is necessary for adaptation through selection, particularly in populations faced with environmental changes that diminish population fitness. In habitats that remain unchanged for many generations, stabilizing selection maximizes exploitation of resources by reducing trait diversity to a narrow optimal range. One might expect that such ostensibly homogeneous populations would have a reduced potential for heritable adaptive responses when faced with fitness-reducing environmental changes. However, field studies have documented populations that, even after long periods of evolutionary stasis, can still rapidly evolve in response to changed environmental conditions. We argue that degeneracy, the ability of diverse population elements to function similarly, can satisfy both the current need to maximize fitness and the future need for diversity. Degenerate ensembles appear functionally redundant in certain environmental contexts and functionally diverse in others. We propose that genetic variation not contributing to the observed range of phenotypes in a current population, also known as cryptic genetic variation (CGV), is a specific case of degeneracy. We argue that CGV, which gradually accumulates in static populations in stable environments, reveals hidden trait differences when environments change. By allowing CGV accumulation, static populations prepare themselves for future rapid adaptations to environmental novelty. A greater appreciation of degeneracy's role in resolving the inherent tension between current stabilizing selection and future directional selection has implications in conservation biology and may be applied in social and technological systems to maximize current performance while strengthening the potential for future changes.


Subject(s)
Adaptation, Biological/genetics , Environment , Genetic Variation , Selection, Genetic , Biological Evolution , Phenotype
11.
Front Genet ; 3: 67, 2012.
Article in English | MEDLINE | ID: mdl-22593762

ABSTRACT

Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.

12.
Front Genet ; 3: 5, 2012.
Article in English | MEDLINE | ID: mdl-22363338

ABSTRACT

Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or "cryptic" within the first environment but are co-opted or "exapted" to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution.

13.
Integr Biol (Camb) ; 3(1): 17-30, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20944865

ABSTRACT

Unless diagnosed early, many adult cancers remain incurable diseases. This is despite an intense global research effort to develop effective anticancer therapies, calling into question the use of rational drug design strategies in targeting complex disease states such as cancer. A fundamental challenge facing researchers and clinicians is that cancers are inherently robust biological systems, able to survive, adapt and proliferate despite the perturbations resulting from anticancer drugs. It is essential that the mechanisms underlying tumor robustness be formally studied and characterized, as without a thorough understanding of the principles of tumor robustness, strategies to overcome therapy resistance are unlikely to be found. Degeneracy describes the ability of structurally distinct system components (e.g. proteins, pathways, cells, organisms) to be conditionally interchangeable in their contribution to system traits and it has been broadly implicated in the robustness and evolvability of complex biological systems. Here we focus on one of the most important mechanisms underpinning tumor robustness and degeneracy, the cellular heterogeneity that is the hallmark of most solid tumors. Based on a combination of computational, experimental and clinical studies we argue that stochastic noise is an underlying cause of tumor heterogeneity and particularly degeneracy. Drawing from a number of recent data sets, we propose an integrative model for the evolution of therapy resistance, and discuss recent computational studies that propose new therapeutic strategies aimed at defeating the adaptable cancer phenotype.


Subject(s)
Models, Biological , Neoplasms/etiology , Neoplasms/therapy , Adaptation, Biological/genetics , Adult , Epigenesis, Genetic , Genomic Instability , Humans , Mutation , Neoplasms/genetics , Neoplastic Stem Cells/pathology , Phenotype , Stochastic Processes , Systems Biology , Tumor Microenvironment
14.
Theor Biol Med Model ; 7: 20, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20550663

ABSTRACT

A generic mechanism--networked buffering--is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems.


Subject(s)
Models, Theoretical , Genome , Proteome
15.
Theor Biol Med Model ; 7: 6, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20167097

ABSTRACT

A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability.


Subject(s)
Adaptation, Biological/physiology , Computational Biology , Evolution, Molecular , Animals , Computational Biology/methods , Humans , Selection, Genetic/physiology , Time Factors
16.
J Theor Biol ; 263(1): 143-53, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-19925810

ABSTRACT

Robustness, the insensitivity of some of a biological system's functionalities to a set of distinct conditions, is intimately linked to fitness. Recent studies suggest that it may also play a vital role in enabling the evolution of species. Increasing robustness, so is proposed, can lead to the emergence of evolvability if evolution proceeds over a neutral network that extends far throughout the fitness landscape. Here, we show that the design principles used to achieve robustness dramatically influence whether robustness leads to evolvability. In simulation experiments, we find that purely redundant systems have remarkably low evolvability while degenerate, i.e. partially redundant, systems tend to be orders of magnitude more evolvable. Surprisingly, the magnitude of observed variation in evolvability can neither be explained by differences in the size nor the topology of the neutral networks. This suggests that degeneracy, a ubiquitous characteristic in biological systems, may be an important enabler of natural evolution. More generally, our study provides valuable new clues about the origin of innovations in complex adaptive systems.


Subject(s)
Gene Regulatory Networks , Neural Networks, Computer , Algorithms , Animals , Computer Simulation , Evolution, Molecular , Genetics, Population , Genotype , Humans , Models, Biological , Models, Genetic , Models, Statistical , Phenotype , Selection, Genetic , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...