Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters











Publication year range
1.
Sci Rep ; 13(1): 13390, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591901

ABSTRACT

Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit. The fenestrated morphology of LSEC were examined with scanning electron and structured illumination microscopy. All xanthine challenges had no toxic effects on LSEC ultrastructure as judged by LSEC fenestration morphology, or function as determined by endocytosis studies. All xanthines in high concentrations (150 µg/mL) increased fenestration frequency but at physiologically relevant concentrations, only theobromine (8 µg/mL) showed an effect. LSEC porosity was influenced only by high caffeine doses which also shifted the fenestration distribution towards smaller pores. Moreover, a dose-dependent increase in fenestration number was observed after caffeine treatment. If these compounds induce similar changes in vivo, age-related reduction of LSEC porosity can be reversed by oral treatment with theobromine or with other xanthines using targeted delivery.


Subject(s)
Caffeine , Theobromine , Animals , Rats , Caffeine/pharmacology , Xanthine , Theobromine/pharmacology , Endothelial Cells , Liver
2.
Microbiology (Reading) ; 168(8)2022 08.
Article in English | MEDLINE | ID: mdl-35925044

ABSTRACT

Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease.


Subject(s)
Bacteria , Cell Wall , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Humans , Life Style
3.
Acta Otolaryngol ; 142(5): 395-401, 2022 May.
Article in English | MEDLINE | ID: mdl-35549817

ABSTRACT

BACKGROUND: Cochlear implant (CI) infections affect a small, but significant number of patients. Unremitting infections can lead to explantation. Fluorescence in situ hybridization (FISH) and microbial community profiling (MCP) are methods of studying microbial environments of explanted devices that can provide information to reduce morbidity and costs of infected CIs. AIMS/OBJECTIVES: To describe the results and clinical significance of bacterial analyses conducted on explanted CIs. MATERIAL AND METHODS: Between 2013 and 2017, 12 explanted devices underwent microbiological analysis in addition to the manufacturer's device failure analysis. Patients' clinical history, infection status and outcome were reviewed and correlated with microbial analysis results. RESULTS: From 2013 to 2017, 12 Cochlear™ devices from 11 patients underwent additional MCP or FISH analysis. Five devices were explanted due to suspected implant associated infection, and seven were explanted for other reasons. FISH analysis revealed biofilm presence on all infected devices, only partial correlation of cultures with biofilm composition and confirmation that biofilm formation occurs preferentially at particular device interfaces and geometries. MCP analysis presented challenges in data analysis inherent to its technique but correlated with cultures of infected devices and suggested a diverse microbial composition of explanted devices. CONCLUSIONS AND SIGNIFICANCE: Microbial analysis of explanted devices can aid in further elucidating treatment approaches to infected CIs.


Subject(s)
Cochlear Implantation , Cochlear Implants , Microbiota , Biofilms , Cochlear Implantation/methods , Humans , In Situ Hybridization, Fluorescence , Postoperative Complications
4.
Microorganisms ; 9(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34576704

ABSTRACT

Recalcitrant chronic infections of implanted medical devices are often linked to the presence of biofilms. The prevention and treatment of medical device-associated infections is a major source of antibiotic use and driver of antimicrobial resistance globally. Lowering the incidence of infection in patients that receive implanted medical devices could therefore significantly improve antibiotic stewardship and reduce patient morbidity. Here we determined if modifying the design of an implantable medical device to reduce bacterial attachment, impacted the incidence of device-associated infections in clinical practice. Since the 1980s cochlear implants have provided long-term treatment of sensorineural hearing deficiency in hundreds of thousands of patients world-wide. Nonetheless, a relatively small number of devices are surgically explanted each year due to unresolvable infections. Features associated with the accumulation of bacteria on the Cochlear™ Nucleus® CI24RE™ model of cochlear implant devices were identified using both in vitro bacterial attachment assays and examination of explanted devices. Macro-scale design modifications that reduced bacterial attachment in vitro were incorporated into the design of the CI500™ and Profile™ series of Nucleus implant. Analyses of mandatory post-market vigilance data of 198,757 CI24RE and 123,084 CI500/Profile series implantation surgeries revealed that these design modifications correlated with significantly reduced infection rates. This study demonstrates that a design-centric approach aimed at mitigating bacterial attachment was a simple, and effective means of reducing infections associated with Cochlear Nucleus devices. This approach is likely to be applicable to improving the designs of other implantable medical devices to reduce device-associated infections.

5.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34108265

ABSTRACT

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-ß. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Subject(s)
Membrane Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Peroxisomes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/metabolism , Cell Line , Cell Line, Tumor , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Immunity, Innate/immunology , Immunity, Innate/physiology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/physiology , Signal Transduction/genetics
6.
Microbiology (Reading) ; 167(4)2021 04.
Article in English | MEDLINE | ID: mdl-33871329

ABSTRACT

Membrane vesicles (MVs) are membrane-bound spherical nanostructures that prevail in all three domains of life. In Gram-negative bacteria, MVs are thought to be produced through blebbing of the outer membrane and are often referred to as outer membrane vesicles (OMVs). We have recently described another mechanism of MV formation in Pseudomonas aeruginosa that involves explosive cell-lysis events, which shatters cellular membranes into fragments that rapidly anneal into MVs. Interestingly, MVs are often observed within preparations of lytic bacteriophage, however the source of these MVs and their association with bacteriophage infection has not been explored. In this study we aimed to determine if MV formation is associated with lytic bacteriophage infection. Live super-resolution microscopy demonstrated that explosive cell lysis of Escherichia coli cells infected with either bacteriophage T4 or T7, resulted in the formation of MVs derived from shattered membrane fragments. Infection by either bacteriophage was also associated with the formation of membrane blebs on intact bacteria. TEM revealed multiple classes of MVs within phage lysates, consistent with multiple mechanisms of MV formation. These findings suggest that bacteriophage infection may be a major contributor to the abundance of bacterial MVs in nature.


Subject(s)
Bacteriophages/physiology , Cell Membrane/virology , Escherichia coli/virology , Extracellular Vesicles/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Extracellular Vesicles/genetics
7.
Microbiology (Reading) ; 167(2)2021 02.
Article in English | MEDLINE | ID: mdl-33400641

ABSTRACT

Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a 'glue', facilitating cell-cell and cell-substratum interactions. We have previously demonstrated that eDNA is produced in Pseudomonas aeruginosa biofilms via explosive cell lysis. This phenomenon involves a subset of the bacterial population explosively lysing, due to peptidoglycan degradation by the endolysin Lys. Here we demonstrate that in P. aeruginosa three holins, AlpB, CidA and Hol, are involved in Lys-mediated eDNA release within both submerged (hydrated) and interstitial (actively expanding) biofilms, albeit to different extents, depending upon the type of biofilm and the stage of biofilm development. We also demonstrate that eDNA release events determine the sites at which cells begin to cluster to initiate microcolony formation during the early stages of submerged biofilm development. Furthermore, our results show that sustained release of eDNA is required for cell cluster consolidation and subsequent microcolony development in submerged biofilms. Overall, this study adds to our understanding of how eDNA release is controlled temporally and spatially within P. aeruginosa biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DNA, Bacterial/metabolism , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Bacteriolysis , Endopeptidases/genetics , Endopeptidases/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Mutation , Pseudomonas aeruginosa/metabolism
8.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763931

ABSTRACT

Stenotrophomonas maltophilia isolate CF13 is a multidrug-resistant isolate that was recovered in Sydney, Australia, in 2011, from a sputum sample from an individual with cystic fibrosis. The genome sequence of CF13 was completed using long- and short-read technologies.

9.
Microbiology (Reading) ; 166(10): 995-1003, 2020 10.
Article in English | MEDLINE | ID: mdl-32749953

ABSTRACT

Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa.


Subject(s)
Biofilms , Pseudomonas aeruginosa/physiology , Transformation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , DNA/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/genetics
10.
mSystems ; 5(3)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32606022

ABSTRACT

Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.

11.
Microbiology (Reading) ; 166(7): 669-678, 2020 07.
Article in English | MEDLINE | ID: mdl-32478653

ABSTRACT

Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.


Subject(s)
Biofilms/growth & development , Cyclic AMP/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Bacterial Proteins/metabolism , DNA, Bacterial , Host-Pathogen Interactions , Movement/drug effects , Mucins/pharmacology , Oligopeptides/pharmacology , Pseudomonas Infections/microbiology , Sequence Deletion , Serum Albumin/pharmacology , Signal Transduction , Virulence Factors/metabolism
12.
ACS Biomater Sci Eng ; 6(7): 3925-3932, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33463326

ABSTRACT

Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution, while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ∼100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed and fabricated, and their bacteria-nanotopography interactions can be assessed in situ.


Subject(s)
Nanotubes, Carbon , Odonata , Animals , Bacteria , Escherichia coli , Helium , Lighting , Microscopy
13.
Sci Rep ; 9(1): 18160, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796774

ABSTRACT

Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance. We assessed four well-characterised New Zealand honeys, quantified for their key antibacterial components, methylglyoxal, hydrogen peroxide and sugar, for their capacity to prevent and eradicate biofilms produced by the common wound pathogen Pseudomonas aeruginosa. We demonstrate that: (1) honey used at substantially lower concentrations compared to those found in honey-based wound dressings inhibited P. aeruginosa biofilm formation and significantly reduced established biofilms; (2) the anti-biofilm effect of honey was largely driven by its sugar component; (3) cells recovered from biofilms treated with sub-inhibitory honey concentrations had slightly increased tolerance to honey; and (4) honey used at clinically obtainable concentrations completely eradicated established P. aeruginosa biofilms. These results, together with their broad antimicrobial spectrum, demonstrate that manuka honey-based wound dressings are a promising treatment for infected chronic wounds, including those with P. aeruginosa biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Apitherapy/methods , Bandages , Honey , Microbial Sensitivity Tests/methods , New Zealand , Wound Infection/drug therapy
14.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601664

ABSTRACT

We report the complete genome of Pseudomonas aeruginosa strain PAK, a strain which has been instrumental in the study of a range of P. aeruginosa virulence and pathogenesis factors and has been used for over 50 years as a laboratory reference strain.

15.
Int J Syst Evol Microbiol ; 69(3): 645-651, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30676309

ABSTRACT

Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399T (=LMG29626T=DSM103228T) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that 6399T and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399T and 7641 are clonal and share 100 % similarity, however, similarity to other type strains (ANIb 73.2-88.8 %, ANIm 83.5-89.9 % and OrthoANI 83.2-89.3 %) indicates that 6399T and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399T were C16 : 0 (32.1 %) C17 : 0cyclo (18.7 %) and C18 : 1ω7c (14.5 %), while Q-8 was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399T was 62.9 (mol%). Strain 6399T can be differentiated from other members of Pandoraea by the absence of C19 : 0ω8c cyclo and by the presence of C17 : 0ω8c cyclo. Together our data show that the bacterial strains 6399T and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399T).


Subject(s)
Burkholderiaceae/classification , Phylogeny , Sputum/microbiology , Bacterial Typing Techniques , Base Composition , Burkholderiaceae/isolation & purification , Cystic Fibrosis , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Humans , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tasmania , Ubiquinone/chemistry
16.
Microb Genom ; 4(11)2018 11.
Article in English | MEDLINE | ID: mdl-30383525

ABSTRACT

Pseudomonas aeruginosa is an extremely successful pathogen able to cause both acute and chronic infections in a range of hosts, utilizing a diverse arsenal of cell-associated and secreted virulence factors. A major cell-associated virulence factor, the Type IV pilus (T4P), is required for epithelial cell adherence and mediates a form of surface translocation termed twitching motility, which is necessary to establish a mature biofilm and actively expand these biofilms. P. aeruginosa twitching motility-mediated biofilm expansion is a coordinated, multicellular behaviour, allowing cells to rapidly colonize surfaces, including implanted medical devices. Although at least 44 proteins are known to be involved in the biogenesis, assembly and regulation of the T4P, with additional regulatory components and pathways implicated, it is unclear how these components and pathways interact to control these processes. In the current study, we used a global genomics-based random-mutagenesis technique, transposon directed insertion-site sequencing (TraDIS), coupled with a physical segregation approach, to identify all genes implicated in twitching motility-mediated biofilm expansion in P. aeruginosa. Our approach allowed identification of both known and novel genes, providing new insight into the complex molecular network that regulates this process in P. aeruginosa. Additionally, our data suggest that the flagellum-associated gene products have a differential effect on twitching motility, based on whether components are intra- or extracellular. Overall the success of our TraDIS approach supports the use of this global genomic technique for investigating virulence genes in bacterial pathogens.


Subject(s)
Biofilms , Fimbriae, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Fimbriae, Bacterial/ultrastructure , Flagella/genetics , Genes, Bacterial , Genomics , Locomotion/genetics , Microscopy, Electron, Transmission , Mutagenesis , Pseudomonas aeruginosa/ultrastructure , Virulence Factors/genetics
17.
Biointerphases ; 13(6): 06E405, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30326702

ABSTRACT

Extracellular deoxyribonucleic acid (eDNA) exists in biological environments such as those around medical implants since prokaryotic or eukaryotic cells can undergo processes such as autolysis, necrosis, and apoptosis. For bacteria, eDNA has been shown to be involved in biofilm formation and gene transfer and acts as a nutrient source. In terms of biofilm formation, eDNA in solution has been shown to be very important in increasing attachment; however, very little is known about the role played by surface immobilized eDNA in initiating bacterial attachment and whether the nature of a DNA layer (physically adsorbed or covalently attached, and molecular weight) influences biofilm formation. In this study, the authors shed light on the role that surface attached DNA plays in the early biofilm formation by using Si wafers (Si) and allylamine plasma polymer (AAMpp) coated Si wafers to adsorb and covalently immobilize salmon sperm DNA of three different molecular weights. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these DNA functionalized surfaces. Characterization of surface chemistry and imaging of attached bacteria were performed via x-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and epi-fluorescence microscopy. XPS results confirmed the successful grafting of DNA on the AAMpp and Si surfaces, and surprisingly the results showed that the surface attached DNA actually reduced initial bacterial attachment, which was contrary to the initial hypothesis. This adds speculation about the specific role played by DNA in the dynamics of how it influences biofilm formation, with the possibility that it could actually be used to make bacterial resistant surfaces.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , DNA/metabolism , Pseudomonas aeruginosa/physiology , Surface Properties , Animals , DNA/chemistry , Male , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Molecular Weight , Photoelectron Spectroscopy , Salmon , Spermatozoa
18.
Sci Rep ; 8(1): 10373, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29991767

ABSTRACT

Mycoplasma hyopneumoniae is an economically devastating, globally disseminated pathogen that can maintain a chronic infectious state within its host, swine. Here, we depict the events underpinning M. hyopneumoniae biofilm formation on an abiotic surface and demonstrate for the first time, biofilms forming on porcine epithelial cell monolayers and in the lungs of pigs, experimentally infected with M. hyopneumoniae. Nuclease treatment prevents biofilms forming on glass but not on porcine epithelial cells indicating that extracellular DNA (eDNA), which localises at the base of biofilms, is critical in the formation of these structures on abiotic surfaces. Subpopulations of M. hyopneumoniae cells, denoted by their ability to take up the dye TOTO-1 and release eDNA, were identified. A visually distinct sub-population of pleomorphic cells, that we refer to here as large cell variants (LCVs), rapidly transition from phase dark to translucent "ghost" cells. The translucent cells accumulate the membrane-impermeable dye TOTO-1, forming readily discernible membrane breaches immediately prior to lysis and the possible release of eDNA and other intracellular content (public goods) into the extracellular environment. Our novel observations expand knowledge of the lifestyles adopted by this wall-less, genome-reduced pathogen and provide further insights to its survival within farm environments and swine.


Subject(s)
Biofilms/growth & development , DNA/metabolism , Genome, Microbial/genetics , Mycoplasma hyopneumoniae/genetics , Animals , Deoxyribonucleases/pharmacology , Epithelial Cells/microbiology , Lung/microbiology , Mycoplasma hyopneumoniae/cytology , Mycoplasma hyopneumoniae/physiology , Surface Properties , Swine
19.
Curr Opin Microbiol ; 45: 164-169, 2018 10.
Article in English | MEDLINE | ID: mdl-30053750

ABSTRACT

Biofilms are a typical mode of growth for most microorganisms and provide them with a variety of survival benefits. Biofilms can pose medical and industrial challenges due to their increased tolerance of antimicrobials and disinfectants. Exposure of bacteria to subinhibitory concentrations of those compounds can further exacerbate the problem, as they provoke physiological changes that lead to increased biofilm production and potential therapeutic failure. The protected niche of a biofilm provides conditions that promote selection for persisters and resistant mutants. In this review we discuss our current understanding of the mechanisms underlying biofilm stimulation in response to subinhibitory antimicrobials, and how we might exploit this 'anti-antibiotic' phenotype to treat biofilm-related infections and discover new compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Physiological Phenomena/drug effects , Biofilms/drug effects , Animals , Bacteria/genetics , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests
20.
Article in English | MEDLINE | ID: mdl-29535975

ABSTRACT

Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular ß-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target ß-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.


Subject(s)
Actins/metabolism , Adhesins, Bacterial/metabolism , Epithelial Cells/metabolism , Host-Pathogen Interactions/physiology , Mycoplasma hyopneumoniae/metabolism , Mycoplasma hyopneumoniae/pathogenicity , Protein Binding , Actins/drug effects , Animals , Antibodies, Monoclonal/pharmacology , Avidin/metabolism , Biotinylation , Cell Line , Cilia/metabolism , Epithelial Cells/microbiology , Lung , Membrane Proteins/metabolism , Pneumonia of Swine, Mycoplasmal , Swine
SELECTION OF CITATIONS
SEARCH DETAIL