Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(2): 103105, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38824638

ABSTRACT

Cells, even from the same line, can maintain heterogeneity in metabolic activity. Here, we present a protocol, adapted for fluorescence-activated cell sorting (FACS), that separates resuspended cells according to their metabolic rate. We describe steps for driving lactate efflux, which produces an alkaline transient proportional to fermentative rate. This pH signature, measured using pH-sensitive dyes, identifies cells with the highest metabolic rate. We then describe a fluorimetric assay of oxygen consumption and acid production to confirm the metabolic contrast between subpopulations. For complete details on the use and execution of this protocol, please refer to Blaszczak et al.1.


Subject(s)
Flow Cytometry , Flow Cytometry/methods , Humans , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Oxygen Consumption/physiology , Cell Separation/methods , Lactic Acid/metabolism , Hydrogen-Ion Concentration
2.
Proc Natl Acad Sci U S A ; 121(13): e2319055121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502695

ABSTRACT

Elevated cancer metabolism releases lactic acid and CO2 into the under-perfused tumor microenvironment, resulting in extracellular acidosis. The surviving cancer cells must adapt to this selection pressure; thus, targeting tumor acidosis is a rational therapeutic strategy to manage tumor growth. However, none of the major approved treatments are based explicitly on disrupting acid handling, signaling, or adaptations, possibly because the distinction between acid-sensitive and acid-resistant phenotypes is not clear. Here, we report pH-related phenotypes of sixty-eight colorectal cancer (CRC) cell lines by measuring i) extracellular acidification as a readout of acid production by fermentative metabolism and ii) growth of cell biomass over a range of extracellular pH (pHe) levels as a measure of the acid sensitivity of proliferation. Based on these measurements, CRC cell lines were grouped along two dimensions as "acid-sensitive"/"acid-resistant" versus "low metabolic acid production"/"high metabolic acid production." Strikingly, acid resistance was associated with the expression of CEACAM6 and CEACAM5 genes coding for two related cell-adhesion molecules, and among pH-regulating genes, of CA12. CEACAM5/6 protein levels were strongly induced by acidity, with a further induction under hypoxia in a subset of CRC lines. Lack of CEACAM6 (but not of CEACAM5) reduced cell growth and their ability to differentiate. Finally, CEACAM6 levels were strongly increased in human colorectal cancers from stage II and III patients, compared to matched samples from adjacent normal tissues. Thus, CEACAM6 is a marker of acid-resistant clones in colorectal cancer and a potential motif for targeting therapies to acidic regions within the tumors.


Subject(s)
Acidosis , Colorectal Neoplasms , Humans , Cell Line, Tumor , Signal Transduction , GPI-Linked Proteins/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Phenotype , Acidosis/metabolism , Tumor Microenvironment , Antigens, CD/genetics , Cell Adhesion Molecules/genetics , Carcinoembryonic Antigen/genetics
3.
Pflugers Arch ; 476(4): 673-688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37999800

ABSTRACT

Acidosis is a chemical signature of the tumour microenvironment that challenges intracellular pH homeostasis. The orchestrated activity of acid-base transporters of the solute-linked carrier (SLC) family is critical for removing the end-products of fermentative metabolism (lactate/H+) and maintaining a favourably alkaline cytoplasm. Given the critical role of pH homeostasis in enabling cellular activities, mutations in relevant SLC genes may impact the oncogenic process, emerging as negatively or positively selected, or as driver or passenger mutations. To address this, we performed a pan-cancer analysis of The Cancer Genome Atlas simple nucleotide variation data for acid/base-transporting SLCs (ABT-SLCs). Somatic mutation patterns of monocarboxylate transporters (MCTs) were consistent with their proposed essentiality in facilitating lactate/H+ efflux. Among all cancers, tumours of uterine corpus endometrial cancer carried more ABT-SLC somatic mutations than expected from median tumour mutation burden. Among these, somatic mutations in SLC4A3 had features consistent with meaningful consequences on cellular fitness. Definitive evidence for ABT-SLCs as 'cancer essential' or 'driver genes' will have to consider microenvironmental context in genomic sequencing because bulk approaches are insensitive to pH heterogeneity within tumours. Moreover, genomic analyses must be validated with phenotypic outcomes (i.e. SLC-carried flux) to appreciate the opportunities for targeting acid-base transport in cancers.


Subject(s)
Membrane Transport Proteins , Neoplasms , Humans , Neoplasms/genetics , Biological Transport , Mutation/genetics , Lactates , Tumor Microenvironment
4.
Cell Rep ; 43(1): 113612, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38141171

ABSTRACT

Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.g., dynamically switching between "baseline" and "activated" metabolic states. Using single-cell metabolic phenotyping of pancreatic ductal adenocarcinoma cells, we identify MIA-PaCa-2 as having broad heterogeneity of fermentative metabolism. Sorting by a readout of lactic acid permeability separates cells by fermentative and respiratory rates. Contrasting phenotypes persist for 4 days and are unrelated to cell cycling or glycolytic/respiratory gene expression; however, transcriptomics links metabolically active cells with interleukin-6 receptor (IL-6R)-STAT3 signaling. We verify this by IL-6R/STAT3 knockdowns and sorting by IL-6R status. IL-6R/STAT3 activates fermentation and transcription of its inhibitor, SOCS3, resulting in delayed negative feedback that underpins transitions between metabolic states. Among cells manifesting wide metabolic heterogeneity, dynamic IL-6R/STAT3 signaling may allow cell cohorts to take turns in progressing energy-intense processes without depleting shared resources.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Signal Transduction , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Phenotype , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism
5.
Cell Rep ; 42(6): 112601, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37270778

ABSTRACT

Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness. However, the transport mechanisms underpinning this adaptation have not been studied systematically. Here, we characterize the pHe-pHi relationship in 66 colorectal cancer cell lines and identify the acid-loading anion exchanger 2 (AE2, SLC4A2) as a regulator of resting pHi. Cells adapt to chronic extracellular acidosis by degrading AE2 protein, which raises pHi and reduces acid sensitivity of growth. Acidity inhibits mTOR signaling, which stimulates lysosomal function and AE2 degradation, a process reversed by bafilomycin A1. We identify AE2 degradation as a mechanism for maintaining a conducive pHi in tumors. As an adaptive mechanism, inhibiting lysosomal degradation of AE2 is a potential therapeutic target.


Subject(s)
Chloride-Bicarbonate Antiporters , Membrane Transport Proteins , Neoplasms , Anion Transport Proteins/metabolism , Antiporters/metabolism , Cell Line , Chloride-Bicarbonate Antiporters/chemistry , Chloride-Bicarbonate Antiporters/metabolism , Cytoplasm/metabolism , Hydrogen-Ion Concentration , Neoplasms/metabolism , Humans
6.
Clin Appl Thromb Hemost ; 26: 1076029620936340, 2020.
Article in English | MEDLINE | ID: mdl-32703005

ABSTRACT

The SPOT GRADE (SG), a Surface Bleeding Severity Scale, is a unique visual method for assessing bleeding severity based on quantitative determinations of blood flow. This study assessed the reliability of the SG scale in a clinical setting and collected initial data on the safety and efficacy of HEMOBLAST Bellows (HB), a hemostatic agent, in abdominal and orthopedic operations. Twenty-seven patients were enrolled across 3 centers and received the investigational device. Bleeding severity and hemostasis were independently assessed by 2 surgical investigators at baseline and at 3, 6, and 10 minutes after application of HB and compared for agreement. The mean paired κ statistic for assignment of SG scores was .7754. The mean paired κ statistics for determining eligibility for participation in the trial based on bleeding severity and the mean paired κ statistics determining the presence of hemostasis were .9301 and .9301, respectively. The proportion of patients achieving hemostasis within 3, 6, and 10 minutes of HB application were 50.0%, 79.2%, and 91.7%, respectively. There were no unanticipated adverse device effects and one possible serious adverse device effect, as determined by the Independent Data Monitoring Committee (IDMC). The reliability of the SG scale was validated in a clinical setting. Initial data on the safety and efficacy of HB in abdominal and orthopedic operations were collected, and there were no concerns raised by the investigators or the IDMC.


Subject(s)
Blood Loss, Surgical/prevention & control , Surgical Wound/therapy , Aged , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...