Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Redox Biol ; 49: 102213, 2022 02.
Article in English | MEDLINE | ID: mdl-34953454

ABSTRACT

Antioxidant signaling/communication is among the most important cellular defense and survival pathways, and the importance of redox signaling and homeostasis in aging has been well-documented. Intracellular levels of glutathione (GSH), a very important endogenous antioxidant, both govern and are governed by the Nrf2 pathway through expression of genes involved in its biosynthesis, including the subunits of the rate-limiting enzyme (glutamate cysteine ligase, GCL) in GSH production, GCLC and GCLM. Mice homozygous null for the Gclm gene are severely deficient in GSH compared to wild-type controls, expressing approximately 10% of normal GSH levels. To compensate for GSH deficiency, Gclm null mice have upregulated redox-regulated genes, and, surprisingly, are less susceptible to certain types of oxidative damage. Furthermore, young Gclm null mice display an interesting lean phenotype, resistance to high fat diet-induced diabetes and obesity, improved insulin and glucose tolerance, and decreased expression of genes involved in lipogenesis. However, the persistence of this phenotype has not been investigated into old age, which is important in light of studies which suggest aging attenuates antioxidant signaling, particularly in response to exogenous stimuli. In this work, we addressed whether aging compromises the favorable phenotype of increased antioxidant activity and improved glucose homeostasis observed in younger Gclm null mice. We present data showing that under basal conditions and in response to cadmium exposure (2 mg/kg, dosed once via intraperitoneal injection), the phenotype previously described in young (<6 months) Gclm null mice persists into old age (24+ months). We also provide evidence that transcriptional activation of the Nrf2, AMPK, and PPARγ pathways underlie the favorable metabolic phenotype observed previously in young Gclm null mice.


Subject(s)
Cadmium , Glutamate-Cysteine Ligase , Animals , Glucose , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Homeostasis , Mice , Mice, Knockout
2.
Geroscience ; 43(5): 2395-2412, 2021 10.
Article in English | MEDLINE | ID: mdl-34480713

ABSTRACT

It has been demonstrated that elamipretide (SS-31) rescues age-related functional deficits in the heart but the full set of mechanisms behind this have yet to be determined. We investigated the hypothesis that elamipretide influences post-translational modifications to heart proteins. The S-glutathionylation and phosphorylation proteomes of mouse hearts were analyzed using shotgun proteomics to assess the effects of aging on these post-translational modifications and the ability of the mitochondria-targeted drug elamipretide to reverse age-related changes. Aging led to an increase in oxidation of protein thiols demonstrated by increased S-glutathionylation of cysteine residues on proteins from Old (24 months old at the start of the study) mouse hearts compared to Young (5-6 months old). This shift in the oxidation state of the proteome was almost completely reversed by 8 weeks of treatment with elamipretide. Many of the significant changes that occurred were in proteins involved in mitochondrial or cardiac function. We also found changes in the mouse heart phosphoproteome that were associated with age, some of which were partially restored with elamipretide treatment. Parallel reaction monitoring of a subset of phosphorylation sites revealed that the unmodified peptide reporting for Myot S231 increased with age, but not its phosphorylated form and that both phosphorylated and unphosphorylated forms of the peptide covering cMyBP-C S307 increased, but that elamipretide treatment did not affect these changes. These results suggest that changes to thiol redox state and phosphorylation status are two ways in which age may affect mouse heart function, which can be restored by treatment with elamipretide.


Subject(s)
Muscle Proteins/chemistry , Oligopeptides , Protein Processing, Post-Translational , Animals , Heart , Mice , Mitochondria , Oligopeptides/pharmacology , Oxidation-Reduction
3.
Chem Res Toxicol ; 34(5): 1265-1274, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33472002

ABSTRACT

We previously found that the widely used disinfectants, benzalkonium chlorides (BACs), alter cholesterol and lipid homeostasis in neuronal cell lines and in neonatal mouse brains. Here, we investigate the effects of BACs on neurospheres, an in vitro three-dimensional model of neurodevelopment. Neurospheres cultured from mouse embryonic neural progenitor cells (NPCs) were exposed to increasing concentrations (from 1 to 100 nM) of a short-chain BAC (BAC C12), a long-chain BAC (BAC C16), and AY9944 (a known DHCR7 inhibitor). We found that the sizes of neurospheres were decreased by both BACs but not by AY9944. Furthermore, we observed potent inhibition of cholesterol biosynthesis at the step of DHCR7 by BAC C12 but not by BAC C16, suggesting that cholesterol biosynthesis inhibition is not responsible for the observed reduction in neurosphere growth. By using immunostaining and cell cycle analysis, we found that both BACs induced apoptosis and decreased proliferation of NPCs. To explore the mechanisms underlying their effect on neurosphere growth, we carried out RNA sequencing on neurospheres exposed to each BAC at 50 nM for 24 h, which revealed the activation of the integrated stress response by both BACs. Overall, these results suggest that BACs affect neurodevelopment by inducing the integrated stress response in a manner independent of their effects on cholesterol biosynthesis.


Subject(s)
Apoptosis/drug effects , Benzalkonium Compounds/pharmacology , Disinfectants/pharmacology , Models, Biological , Neurons/drug effects , Animals , Benzalkonium Compounds/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Disinfectants/chemistry , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Oxidative Stress/drug effects
4.
Drug Metab Dispos ; 48(3): 187-197, 2020 03.
Article in English | MEDLINE | ID: mdl-31955137

ABSTRACT

Doxorubicin is a widely used cancer therapeutic, but its effectiveness is limited by cardiotoxic side effects. Evidence suggests cardiotoxicity is due not to doxorubicin, but rather its metabolite, doxorubicinol. Identification of the enzymes responsible for doxorubicinol formation is important in developing strategies to prevent cardiotoxicity. In this study, the contributions of three murine candidate enzymes to doxorubicinol formation were evaluated: carbonyl reductase (Cbr) 1, Cbr3, and thioredoxin reductase 1 (Tr1). Analyses with purified proteins revealed that all three enzymes catalyzed doxorubicin-dependent NADPH oxidation, but only Cbr1 and Cbr3 catalyzed doxorubicinol formation. Doxorubicin-dependent NADPH oxidation by Tr1 was likely due to redox cycling. Subcellular fractionation results showed that doxorubicin-dependent redox cycling activity was primarily microsomal, whereas doxorubicinol-forming activity was exclusively cytosolic, as were all three enzymes. An immunoclearing approach was used to assess the contributions of the three enzymes to doxorubicinol formation in the complex milieu of the cytosol. Immunoclearing Cbr1 eliminated 25% of the total doxorubicinol-forming activity in cytosol, but immunoclearing Cbr3 had no effect, even in Tr1 null livers that overexpressed Cbr3. The immunoclearing results constituted strong evidence that Cbr1 contributed to doxorubicinol formation in mouse liver but that enzymes other than Cbr1 also played a role, a conclusion supported by ammonium sulfate fractionation results, which showed that doxorubicinol-forming activity was found in fractions that contained little Cbr1. In conclusion, the results show that Cbr1 accounts for 25% of the doxorubicinol-forming activity in mouse liver cytosol but that the majority of the doxorubicinol-forming activity remains unidentified. SIGNIFICANCE STATEMENT: Earlier studies suggested carbonyl reductase (Cbr) 1 plays a dominant role in converting chemotherapeutic doxorubicin to cardiotoxic doxorubicinol, but a new immunoclearing approach described herein shows that Cbr1 accounts for only 25% of the doxorubicinol-forming activity in mouse liver cytosol, that two other candidate enzymes-Cbr3 and thioredoxin reductase 1-play no role, and that the majority of the activity remains unidentified. Thus, targeting Cbr1 is necessary but not sufficient to eliminate doxorubicinol-associated cardiotoxicity; identification of the additional doxorubicinol-forming activity is an important next challenge.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cardiotoxicity/metabolism , Doxorubicin/metabolism , Liver/metabolism , Animals , Cytosol/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADP/metabolism , Oxidation-Reduction
5.
Free Radic Biol Med ; 134: 268-281, 2019 04.
Article in English | MEDLINE | ID: mdl-30597195

ABSTRACT

Sarcopenia and exercise intolerance are major contributors to reduced quality of life in the elderly for which there are few effective treatments. We tested whether enhancing mitochondrial function and reducing mitochondrial oxidant production with SS-31 (elamipretide) could restore redox balance and improve skeletal muscle function in aged mice. Young (5 mo) and aged (26 mo) female C57BL/6Nia mice were treated for 8-weeks with 3 mg/kg/day SS-31. Mitochondrial function was assessed in vivo using 31P and optical spectroscopy. SS-31 reversed age-related decline in maximum mitochondrial ATP production (ATPmax) and coupling of oxidative phosphorylation (P/O). Despite the increased in vivo mitochondrial capacity, mitochondrial protein expression was either unchanged or reduced in the treated aged mice and respiration in permeabilized gastrocnemius (GAS) fibers was not different between the aged and aged+SS-31 mice. Treatment with SS-31 also restored redox homeostasis in the aged skeletal muscle. The glutathione redox status was more reduced and thiol redox proteomics indicated a robust reversal of cysteine S-glutathionylation post-translational modifications across the skeletal muscle proteome. The gastrocnemius in the age+SS-31 mice was more fatigue resistant with significantly greater mass compared to aged controls. This contributed to a significant increase in treadmill endurance compared to both pretreatment and untreated control values. These results demonstrate that the shift of redox homeostasis due to mitochondrial oxidant production in aged muscle is a key factor in energetic defects and exercise intolerance. Treatment with SS-31 restores redox homeostasis, improves mitochondrial quality, and increases exercise tolerance without an increase in mitochondrial content. Since elamipretide is currently in clinical trials these results indicate it may have direct translational value for improving exercise tolerance and quality of life in the elderly.


Subject(s)
Aging/drug effects , Exercise Tolerance/drug effects , Mitochondria/physiology , Muscle, Skeletal/physiology , Oligopeptides/pharmacology , Oxidative Stress/drug effects , Physical Conditioning, Animal/methods , Animals , Female , Glutathione/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Muscle, Skeletal/drug effects , Oxidation-Reduction , Oxidative Phosphorylation
6.
Chem Res Toxicol ; 32(3): 421-436, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30547568

ABSTRACT

Here we report a vertically integrated in vitro - in silico study that aims to elucidate the molecular initiating events involved in the induction of oxidative stress (OS) by seven diverse chemicals (cumene hydroperoxide, t-butyl hydroperoxide, hydroquinone, t-butyl hydroquinone, bisphenol A, Dinoseb, and perfluorooctanoic acid). To that end, we probe the relationship between chemical properties, cell viability, glutathione (GSH) depletion, and antioxidant gene expression. Concentration-dependent effects on cell viability were assessed by MTT assay in two Hepa-1 derived mouse liver cell lines: a control plasmid vector transfected cell line (Hepa-V), and a cell line with increased glutamate-cysteine ligase (GCL) activity and GSH content (CR17). Changes to intracellular GSH content and mRNA expression levels for the Nrf2-driven antioxidant genes Gclc, Gclm, heme oxygenase-1 ( Hmox1), and NADPH quinone oxidoreductase-1 ( Nqo1) were monitored after sublethal exposure to the chemicals. In silico models of covalent and redox reactivity were used to rationalize differences in activity of quinones and peroxides. Our findings show CR17 cells were generally more resistant to chemical toxicity and showed markedly attenuated induction of OS biomarkers; however, differences in viability effects between the two cell lines were not the same for all chemicals. The results highlight the vital role of GSH in protecting against oxidative stress-inducing chemicals as well as the importance of probing molecular initiating events in order to identify chemicals with lower potential to cause oxidative stress.


Subject(s)
Antioxidants/metabolism , Gene Expression/drug effects , Glutathione/biosynthesis , Glutathione/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , 2,4-Dinitrophenol/analogs & derivatives , 2,4-Dinitrophenol/chemistry , 2,4-Dinitrophenol/pharmacology , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Caprylates/chemistry , Caprylates/pharmacology , Cell Survival/drug effects , Cells, Cultured , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Hydroquinones/chemistry , Hydroquinones/pharmacology , Kinetics , Mice , Molecular Structure , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/pharmacology , tert-Butylhydroperoxide/chemistry , tert-Butylhydroperoxide/pharmacology
7.
Inhal Toxicol ; 30(9-10): 397-403, 2018.
Article in English | MEDLINE | ID: mdl-30523721

ABSTRACT

INTRODUCTION: Concerns have been raised regarding occupational exposure to engineered nanomaterials (ENMs). Potential impacts on lung function from inhalation exposures are of concern as the lung is a sensitive ENM target in animals. Epidemiological data suggest that occupational exposure to ENMs may impact respiratory and cardiovascular health. Quantum dots (QDs) are ENMs with outstanding semiconductor and fluorescent properties with uses in biomedicine and electronics. QDs are known to induce inflammation and cytotoxicity in rodents and high dose exposures impact lung function 2 weeks after exposure. However, effects of mouse strain and the temporality of QD effects on lung function at more occupationally relevant doses have not been well-established. OBJECTIVE: We evaluated the impact of QD exposure on respiratory mechanics in C57BL/6J and A/J mice. Previous work found a greater initial inflammatory response to QD exposure in A/J mice compared to C57BL/6J mice. Thus, we hypothesized that A/J mice would be more sensitive to QD-induced effects on lung mechanics. METHODS: C57BL/6J and A/J mice were exposed to 6 µg/kg Cd equivalents of amphiphilic polymer-coated Cd/Se core, ZnS shell QDs via oropharyngeal aspiration. Lung mechanics were measured using forced oscillation, and inflammation was characterized by neutrophils and cytokines in bronchoalveolar lavage fluid. RESULTS: Both strains showed signs of QD-induced acute lung inflammation. However, lung mechanics were impacted by QD exposure in A/J mice only. CONCLUSIONS: Our findings suggest that susceptibility to QDs and similar ENM-induced changes in lung function may depend at least in part on genetic background.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Quantum Dots/toxicity , Respiratory Mechanics , Animals , Bronchoalveolar Lavage Fluid , Cadmium Compounds/toxicity , Cytokines , Inflammation , Lung/physiopathology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Neutrophils , Selenium Compounds/toxicity , Time Factors
8.
FASEB J ; 31(10): 4600-4611, 2017 10.
Article in English | MEDLINE | ID: mdl-28716969

ABSTRACT

Silver nanoparticles (AgNPs) are employed in a variety of consumer products; however, in vivo rodent studies indicate that AgNPs can cause lung inflammation and toxicity in a strain- and particle type-dependent manner, but mechanisms of susceptibility remain unclear. The aim of this study was to assess the variation in AgNP-induced lung inflammation and toxicity across multiple inbred mouse strains and to use genome-wide association (GWA) mapping to identify potential candidate susceptibility genes. Mice received doses of 0.25 mg/kg of either 20-nm citrate-coated AgNPs or citrate buffer using oropharyngeal aspiration. Neutrophils in bronchoalveolar lavage fluid (BALF) served as markers of inflammation. We found significant strain- and treatment-dependent variation in neutrophils in BALF. GWA mapping identified 10 significant single-nucleotide polymorphisms (false discovery rate, 15%) in 4 quantitative trait loci on mouse chromosomes 1, 4, 15, and 18, and Nedd4l (neural precursor cell expressed developmentally downregulated gene 4-like; chromosome 18), Ano6 (anocatmin 6; chromosome 15), and Rnf220 (Ring finger protein 220; chromosome 4) were considered candidate genes. Quantitative RT-PCR revealed significant inverse associations between mRNA levels of these genes and neutrophil influx. Nedd4l, Ano6, and Rnf220 are candidate susceptibility genes for AgNP-induced lung inflammation that warrant additional exploration in future studies.-Scoville, D. K., Botta, D., Galdanes, K., Schmuck, S. C., White, C. C., Stapleton, P. L., Bammler, T. K., MacDonald, J. W., Altemeier, W. A., Hernandez, M., Kleeberger, S. R., Chen, L.-C., Gordon, T., Kavanagh, T. J. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Disease Susceptibility/metabolism , Metal Nanoparticles/toxicity , Neutrophils/drug effects , Pneumonia/genetics , Animals , Genome-Wide Association Study/methods , Lung/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Neutrophils/metabolism , Pneumonia/chemically induced , Polymorphism, Single Nucleotide/genetics , Silver
9.
Toxicol In Vitro ; 40: 170-183, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28089783

ABSTRACT

The liver is the main site for drug and xenobiotics metabolism, including inactivation or bioactivation. In order to improve the predictability of drug safety and efficacy in clinical development, and to facilitate the evaluation of the potential human health effects from exposure to environmental contaminants, there is a critical need to accurately model human organ systems such as the liver in vitro. We are developing a microphysiological system (MPS) based on a new commercial microfluidic platform (Nortis, Inc.) that can utilize primary liver cells from multiple species (e.g., rat and human). Compared to conventional monolayer cell culture, which typically survives for 5-7days or less, primary rat or human hepatocytes in an MPS exhibited higher viability and improved hepatic functions, such as albumin production, expression of hepatocyte marker HNF4α and canaliculi structure, for up to 14days. Additionally, induction of Cytochrome P450 (CYP) 1A and 3A4 in cryopreserved human hepatocytes was observed in the MPS. The acute cytotoxicity of the potent hepatotoxic and hepatocarcinogen, aflatoxin B1, was evaluated in human hepatocytes cultured in an MPS, demonstrating the utility of this model for acute hepatotoxicity assessment. These results indicate that MPS-cultured hepatocytes provide a promising approach for evaluating chemical toxicity in vitro.


Subject(s)
Cell Culture Techniques , Chemical and Drug Induced Liver Injury , Drug Evaluation, Preclinical/methods , Toxicity Tests/methods , Adult , Aflatoxin B1/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Child , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Female , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Middle Aged , Rats , Young Adult
10.
Oxid Med Cell Longev ; 2016: 9409363, 2016.
Article in English | MEDLINE | ID: mdl-27446510

ABSTRACT

Objectives. Oxidative stress contributes to Parkinson's disease (PD) pathophysiology and progression. The objective was to describe central and peripheral metabolites of redox metabolism and to describe correlations between glutathione (Glu) status, age, and disease severity. Methods. 58 otherwise healthy individuals with PD were examined during a single study visit. Descriptive statistics and scatterplots were used to evaluate normality and distribution of this cross-sectional sample. Blood tests and magnetic resonance spectroscopy (MRS) were used to collect biologic data. Spearman's rank-order correlation coefficients were used to evaluate the strength and direction of the association. The Unified PD Rating Scale (UPDRS) and the Patient-Reported Outcomes in PD (PRO-PD) were used to rate disease severity using regression analysis. Results. Blood measures of Glu decreased with age, although there was no age-related decline in MRS Glu. The lower the blood Glu concentration, the more severe the UPDRS (P = 0.02, 95% CI: -13.96, -1.14) and the PRO-PD (P = 0.01, 95% CI: -0.83, -0.11) scores. Discussion. These data suggest whole blood Glu may have utility as a biomarker in PD. Future studies should evaluate whether it is a modifiable risk factor for PD progression and whether Glu fortification improves PD outcomes.

11.
NPJ Parkinsons Dis ; 2: 16002, 2016.
Article in English | MEDLINE | ID: mdl-28725693

ABSTRACT

Glutathione (GSH) is depleted early in the course of Parkinson's disease (PD), and deficiency has been shown to perpetuate oxidative stress, mitochondrial dysfunction, impaired autophagy, and cell death. GSH repletion has been proposed as a therapeutic intervention. The objective of this study was to evaluate whether intranasally administered reduced GSH, (in)GSH, is capable of augmenting central nervous system GSH concentrations, as determined by magnetic resonance spectroscopy in 15 participants with mid-stage PD. After baseline GSH measurement, 200 mg (in)GSH was self-administered inside the scanner without repositioning, then serial GSH levels were obtained over ~1 h. Statistical significance was determined by one-way repeated measures analysis of variance. Overall, (in)GSH increased brain GSH relative to baseline (P<0.001). There was no increase in GSH 8 min after administration, although it was significantly higher than baseline at all of the remaining time points (P<0.01). This study is the first to demonstrate that intranasal administration of GSH elevates brain GSH levels. This increase persists at least 1 h in subjects with PD. Further dose-response and steady-state administration studies will be required to optimize the dosing schedule for future trials to evaluate therapeutic efficacy.

12.
Toxicol Appl Pharmacol ; 289(2): 240-50, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26476918

ABSTRACT

Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe-ZnS core-shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci.


Subject(s)
Cadmium Compounds/toxicity , Lung/drug effects , Pneumonia/chemically induced , Quantum Dots/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Zinc Compounds/toxicity , Animals , Bronchoalveolar Lavage Fluid/immunology , Cluster Analysis , Cytokines/metabolism , Genetic Predisposition to Disease , Glutathione/metabolism , Heredity , Lung/immunology , Lung/metabolism , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NOD , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Phenotype , Pneumonia/genetics , Pneumonia/immunology , Pneumonia/metabolism , Risk Factors , Species Specificity , Time Factors
13.
Nanoscale ; 7(22): 10085-10093, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25978523

ABSTRACT

The rapid development and acceptance of PDots for biological applications depends on an in depth understanding of their cytotoxicity. In this paper, we performed a comprehensive study of PDot cytotoxicity at both the gross cell effect level (such as cell viability, proliferation and necrosis) and more subtle effects (such as redox stress) on RAW264.7 cells, a murine macrophage cell line with high relevance to in vivo nanoparticle disposition. The redox stress measurements assessed were inner mitochondrial membrane lipid peroxidation (nonyl-acridine orange, NAO), total thiol level (monobromobimane, MBB), and pyridine nucleotide redox status (NAD(P)H autofluorescence). Because of the extensive work already performed with QDots on nanotoxicity and also because of their comparable size, QDots were chosen as a comparison/reference nanoparticle for this study. The results showed that PDots exhibit cytotoxic effects to a much lesser degree than their inorganic analogue (QDots) and are much brighter, allowing for much lower concentrations to be used in various biological applications. In addition, at lower dose levels (2.5 nM to 10 nM) PDot treatment resulted in higher total thiol level than those found with QDots. At higher dose levels (20 nM to 40 nM) QDots caused significantly higher thiol levels in RAW264.7 cells, than was seen with PDots, suggesting that QDots elicit compensation to oxidative stress by upregulating GSH synthesis. At the higher concentrations of QDots, NAD(P)H levels showed an initial depletion, then repletion to a level that was greater than vehicle controls. PDots showed a similar trend but this was not statistically significant. Because PDots elicit less oxidative stress and cytotoxicity at low concentrations than QDots, and because they exhibit superior fluorescence at these low concentrations, PDots are predicted to have enhanced utility in biomedical applications.


Subject(s)
Macrophages/drug effects , Oxidative Stress/drug effects , Quantum Dots/toxicity , Semiconductors , Animals , Cell Survival/drug effects , Mice , RAW 264.7 Cells
14.
Chem Biol Interact ; 234: 154-61, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25446851

ABSTRACT

Doxorubicin is highly effective at inducing DNA double-strand breaks in rapidly dividing cells, which has led to it being a widely used cancer chemotherapeutic. However, clinical administration of doxorubicin is limited by off-target cardiotoxicity, which is thought to be mediated by doxorubicinol, the primary alcohol metabolite of doxorubicin. Carbonyl reductase 1 (CBR1), a well-characterized monomeric enzyme present at high basal levels in the liver, is known to exhibit activity toward doxorubicin. Little is known about a closely related enzyme, carbonyl reductase 3 (CBR3), which is present in the liver at low basal levels but is highly inducible by the transcription factor Nrf2. Genetic polymorphisms in CBR3, but not CBR1, are associated with differential cardiac outcomes in doxorubicin treated pediatric patients. Cbr3 mRNA and CBR3 protein are highly expressed in the livers of Gclm-/- mice (a mouse model of glutathione deficiency) relative to wild type mice. In the present study, we first investigated the ability of CBR3 to metabolize doxorubicin. Incubations of doxorubicin and purified recombinant murine CBR3 (mCBR3) were analyzed for doxorubicinol formation using HPLC, revealing for the first time that doxorubicin is a substrate of mCBR3. Moreover, hepatocytes from Gclm-/- mice produced more doxorubicinol than Gclm+/+ hepatocytes. In addition, differentiated rat myoblasts (C2C12 cells) co-cultured with primary Gclm-/- murine hepatocytes were more sensitive to doxorubicin-induced cytostasis/cytotoxicity than incubations with Gclm+/+ hepatocytes. Our results indicate a potentially important role for CBR3 in doxorubicin-induced cardiotoxicity. Because there is likely to be variability in hepatic CBR3 activity in humans (due to either genetic or epigenetic influences on its expression), these data also suggest that inhibition of CBR3 may provide protection from doxorubicinol cardiotoxicity.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cardiotoxicity/metabolism , Doxorubicin/metabolism , Glutathione/deficiency , Glutathione/metabolism , Hepatocytes/metabolism , Animals , Cell Line , Coculture Techniques , Disease Models, Animal , Female , Liver/metabolism , Mice , Myoblasts/metabolism , RNA, Messenger/genetics , Rats
15.
Redox Biol ; 2: 377-87, 2014.
Article in English | MEDLINE | ID: mdl-24563856

ABSTRACT

The mechanism by which acetaminophen (APAP) causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD) compared to male C57BL/6 mice in order to identify the cause(s) of sensitivity. Furthermore, we use mice that are either heterozygous (HZ) or null (KO) for glutamate cysteine ligase modifier subunit (Gclm), in order to titrate the toxicity relative to wild-type (WT) mice. Gclm is important for efficient de novo synthesis of glutathione (GSH). APAP (300 mg/kg, ip) or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP-protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/enzymology , Glutamate-Cysteine Ligase/genetics , Peroxiredoxin VI/metabolism , Acetaminophen/administration & dosage , Alanine Transaminase/blood , Animals , Drug Resistance , Female , Gene Knockout Techniques , Glutathione/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Sex Factors
16.
Inhal Toxicol ; 25(8): 444-54, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23808636

ABSTRACT

CONTEXT: Inhalation of fine particulate matter (PM2.5) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM2.5 is largely derived from diesel exhaust (DE), and these pathophysiological effects may be due in part to oxidative stress resulting from DE inhalation. The antioxidant glutathione (GSH) is important in limiting oxidative stress-induced vascular dysfunction. The rate-limiting enzyme in GSH synthesis is glutamate cysteine ligase and polymorphisms in its catalytic and modifier subunits (GCLC and GCLM) have been shown to influence vascular function and risk of myocardial infarction in humans. OBJECTIVE: We hypothesized that compromised de novo synthesis of GSH in Gclm⁻/⁺ mice would result in increased sensitivity to DE-induced lung inflammation and vascular effects. MATERIALS AND METHODS: WT and Gclm⁻/⁺ mice were exposed to DE via inhalation (300 µg/m³) for 6 h. Neutrophil influx into the lungs, plasma GSH redox potential, vascular reactivity of aortic rings and aortic nitric oxide (NO•) were measured. RESULTS: DE inhalation resulted in mild bronchoalveolar neutrophil influx in both genotypes. DE-induced effects on plasma GSH oxidation and acetylcholine (ACh)-relaxation of aortic rings were only observed in Gclm⁻/⁺ mice. Contrary to our hypothesis, DE exposure enhanced ACh-induced relaxation of aortic rings in Gclm⁻/⁺ mice. DISCUSSION AND CONCLUSION: THESE data support the hypothesis that genetic determinants of antioxidant capacity influence the biological effects of acute inhalation of DE. However, the acute effects of DE on the vasculature may be dependent on the location and types of vessels involved. Polymorphisms in GSH synthesis genes are common in humans and further investigations into these potential gene-environment interactions are warranted.


Subject(s)
Air Pollutants/toxicity , Glutamate-Cysteine Ligase/genetics , Vehicle Emissions/toxicity , Administration, Inhalation , Animals , Aorta/physiology , Bronchoalveolar Lavage Fluid/immunology , Female , Glutathione/blood , Glutathione Disulfide/blood , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutrophils/immunology , Nitric Oxide/metabolism , Oxidation-Reduction , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/physiopathology , Vasodilation
17.
PLoS One ; 8(5): e64165, 2013.
Article in English | MEDLINE | ID: mdl-23724032

ABSTRACT

Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/- and Gclm -/- mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/-) mice, whereas Gclm null (-/-) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/- mice, but not from Gclm -/- mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm -/- mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm -/- mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.


Subject(s)
Glutamate-Cysteine Ligase/genetics , Pneumonia/etiology , Polymers/chemistry , Quantum Dots/chemistry , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cadmium Compounds/chemistry , Cadmium Compounds/metabolism , Cadmium Compounds/toxicity , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Enzyme Activation , Glutathione/biosynthesis , Inflammation Mediators/immunology , Keratinocytes/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Neutrophil Infiltration/immunology , Peroxidase/metabolism , Polymers/toxicity , Quantum Dots/toxicity , RNA, Messenger/genetics , Selenium Compounds/chemistry , Selenium Compounds/metabolism , Selenium Compounds/toxicity , Stress, Physiological/genetics , Stress, Physiological/immunology , Tumor Necrosis Factor-alpha/metabolism , Zinc Sulfate/chemistry
18.
Aging Cell ; 12(5): 763-71, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23692570

ABSTRACT

Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial-targeted peptide SS-31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg(-1) of SS-31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and (31) P magnetic resonance spectroscopy. Age-related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS-31 treatment, while SS-31 had no observable effect on young muscle. These effects of SS-31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2 O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS-31 treatment, and eight days of SS-31 treatment led to increased whole-animal endurance capacity. These data demonstrate that SS-31 represents a new strategy for reversing age-related deficits in skeletal muscle with potential for translation into human use.


Subject(s)
Aging/physiology , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Sarcopenia/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress
19.
Toxicol Sci ; 132(2): 399-408, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23315585

ABSTRACT

Domoic acid (DomA) is a potent marine neurotoxin. By activating α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid/kainate receptors, DomA induces oxidative stress-mediated apoptotic cell death in neurons. The effect of prolonged (10 days) exposure to a low, nontoxic concentration (5nM) of DomA on acute (intermediate concentration) neurotoxicity of this toxin was investigated in cerebellar granule neurons (CGNs) from wild-type mice and mice lacking the glutamate cysteine ligase (GCL) modifier subunit (Gclm (/)). CGNs from Gclm (/) mice have very low glutathione (GSH) levels and are very sensitive to DomA toxicity. In CGNs from wild-type mice, prolonged exposure to 5nM DomA did not cause any overt toxicity but reduced oxidative stress-mediated apoptotic cell death induced by exposure to an intermediate concentration (100nM for 24h) of DomA. This protection was not observed in CGNs from Gclm (/) mice. Prolonged DomA exposure increased GSH levels in CGNs of wild-type but not Gclm (/) mice. Levels of GCLC (the catalytic subunit of GCL) protein and mRNA were increased in CGNs of both mouse strains, whereas levels of GCLM protein and mRNA, activity of GCL, and levels of GCL holoenzyme were only increased in CGNs of wild-type mice. Chronic DomA exposure also protected wild-type CGNs from acute toxicity of other oxidants. The results indicate that CGNs from Gclm (/) mice, which are already more sensitive to DomA toxicity, are unable to upregulate their GSH levels. As Gclm (/) mice may represent a model for a common human polymorphism in GCLM, such individuals may be at particular risk for DomA-induced neurotoxicity.


Subject(s)
Cerebellum/drug effects , Cytoplasmic Granules/physiology , Glutathione/physiology , Kainic Acid/analogs & derivatives , Animals , Cerebellum/cytology , Kainic Acid/pharmacology , Mice
20.
Nanotoxicology ; 7(2): 181-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22264017

ABSTRACT

Because of their unique optical properties, quantum dots (QDs) have become a preferred system for ultrasensitive detection and imaging. However, since QDs commonly contain Cd and other heavy metals, concerns have been raised regarding their toxicity. QDs are thus commonly synthesised with a ZnS cap structure and/or coated with polymeric stabilisers. We recently synthesised amphiphilic polymer-coated tri-n-octylphosphine oxide - poly(maleic anhydride-alt-1-tetradecene (TOPO-PMAT) QDs, which are highly stable in aqueous environments. The effects of these QDs on viability and stress response in five cell lines of mouse and human origins are reported here. Human and mouse macrophages and human kidney cells readily internalised these QDs, resulting in modest toxicity. TOPO-PMAT QD exposure was highly correlated with the induction of the stress response protein heme oxygenase-1 (HMOX1). Other stress biomarkers (glutamate cysteine ligase modifier subunit, NAD(P)H, necrosis) were only moderately affected. HMOX1 may thus be a useful biomarker of TOPO-QDOT QD exposure across cell types and species.


Subject(s)
Cadmium Compounds/toxicity , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Polymers/toxicity , Quantum Dots , Selenium Compounds/toxicity , Sulfides/toxicity , Surface-Active Agents/toxicity , Zinc Compounds/toxicity , Animals , Biomarkers/metabolism , Blotting, Western , Cadmium Compounds/metabolism , Cell Line , Cell Survival/drug effects , Cluster Analysis , Dose-Response Relationship, Drug , Humans , Lipid Peroxidation/drug effects , Mice , Microscopy, Confocal , Necrosis , Organophosphorus Compounds/toxicity , Oxidative Stress/drug effects , Polymers/metabolism , Selenium Compounds/metabolism , Sulfhydryl Compounds/metabolism , Sulfides/metabolism , Surface-Active Agents/metabolism , Zinc Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...