Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38442019

ABSTRACT

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Subject(s)
Plasminogen , Receptors, Cell Surface , Mice , Animals , Humans , Plasminogen/metabolism , Receptors, Cell Surface/metabolism , Caloric Restriction , Liver/metabolism , Mice, Transgenic , Serine Proteases , Cell Proliferation , Muscles/metabolism
2.
Nat Aging ; 3(8): 948-964, 2023 08.
Article in English | MEDLINE | ID: mdl-37500973

ABSTRACT

Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.


Subject(s)
Longevity , Rejuvenation , Mice , Animals , Longevity/genetics , Multiomics , Aging/genetics
3.
Cell Metab ; 35(5): 807-820.e5, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37086720

ABSTRACT

Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions. At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. The elevation of biological age by stress may be a quantifiable and actionable target for future interventions.


Subject(s)
COVID-19 , Humans , Animals , Mice , Aging/physiology , Parabiosis
4.
Nat Commun ; 13(1): 7613, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494364

ABSTRACT

Pathologies associated with sarcopenia include decline in muscular strength, lean mass and regenerative capacity. Despite the substantial impact on quality of life, no pharmacological therapeutics are available to counteract the age-associated decline in functional capacity and/or, resilience. Evidence suggests immune-secreted cytokines can improve muscle regeneration, a strategy which we leverage in this study by rescuing the age-related deficiency in Meteorin-like through several in vivo add-back models. Notably, the intramuscular, peptide injection of recombinant METRNL was sufficient to improve muscle regeneration in aging. Using ex vivo media exchange and in vivo TNF inhibition, we demonstrate a mechanism of METRNL action during regeneration, showing it counteracts a pro-fibrotic gene program by triggering TNFα-induced apoptosis of fibro/adipogenic progenitor cells. These findings demonstrate therapeutic applications for METRNL to improve aged muscle, and show Fibro/Adipogenic Progenitors are viable therapeutic targets to counteract age-related loss in muscle resilience.


Subject(s)
Muscle, Skeletal , Quality of Life , Muscle, Skeletal/physiology , Adipogenesis , Stem Cells , Cytokines
5.
Elife ; 112022 Sep 28.
Article in English | MEDLINE | ID: mdl-36169399

ABSTRACT

The secreted protein isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53% overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway, and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this antidiabetic circulating protein controls muscle biology.


Cells need energy to survive and carry out their role in the body. They do this by breaking down molecules, like sugar, into substances that can fuel the creation of new compounds, like proteins or lipids. This process, known as metabolism, involves a series of interconnecting chemical reactions which are organized into pathways. Metabolic pathways contain proteins that catalyze each sequential reaction. Hormones can change the activity of these proteins by adding a chemical group called a phosphate. This reversible modification can majorly impact the metabolism of cells, resulting in changes to the body's tissues. The hormone insulin, for instance, alters a well-known metabolic pathway that triggers skeletal muscle cells to produce more proteins, leading to stronger and larger muscles. In 2021, a group of scientists discovered a molecule made by fat cells, called Isthmin-1, also activates components in this pathway. Similar to insulin, Isthmin-1 encourages muscle and fat cells to take up sugar. However, it also prevents the liver from accumulating excess fat, suggesting Isthmin-1 may trigger a different cascade of molecules to insulin. To investigate this possibility, Zhao et al. ­ including some of the researchers involved in the 2021 study ­ exposed cells grown in the laboratory to Isthmin-1 or insulin and looked for phosphates on all their proteins. This revealed that only 53% of the proteins Isthmin-1 modifies are also altered by insulin. Of the proteins unique to Isthmin-1, several had known roles in making and maintaining proteins in muscle cells. To understand more about the role of this newly discovered pathway, Zhao et al. genetically engineered mice to lack the gene that codes for Isthmin-1. This decreased the size and strength of the mice's muscle fibers and reduced the signals that normally lead to skeletal muscle growth. These findings suggest that Isthmin-1 regulates skeletal muscle size via a metabolic pathway that is slightly different to the one activated by insulin. Many metabolic disorders are associated with muscle loss, like diabetes, and this newly discovered network of proteins could further our understanding of how to prevent and treat these diseases.


Subject(s)
Muscle Proteins , Proto-Oncogene Proteins c-akt , Mice , Animals , Muscle Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Biosynthesis , TOR Serine-Threonine Kinases/metabolism , Insulin/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Hypoglycemic Agents/metabolism , Amino Acids/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
6.
J Orthop Res ; 40(11): 2510-2521, 2022 11.
Article in English | MEDLINE | ID: mdl-35076116

ABSTRACT

Meteorin-like protein (Metrnl), homologous to the initially identified neurotrophic factor Meteorin, is a secreted, multifunctional protein. Here we used mouse models to investigate Metrnl's role in skeletal development and bone fracture healing. During development Metrnl was expressed in the perichondrium and primary ossification center. In neonates, single cell RNA-seq of diaphyseal bone demonstrated strongest expression of Metrnl transcript by osteoblasts. In vitro, Metrnl was osteoinductive, increasing osteoblast differentiation and mineralization in tissue culture models. In vivo, loss of Metrnl expression resulted in no change in skeletal metrics in utero, at birth, or during postnatal growth. Six-week-old Metrnl-null mice displayed similar body length, body weight, tibial length, femoral length, BV/TV, trabecular number, trabecular thickness, and cortical thickness as littermate controls. In 4-month-old mice, lack of Metrnl expression did not change structural stiffness, ultimate force, or energy to fracture of femora under 3-point-bending. Last, we investigated the role of Metrnl in bone fracture healing. Metrnl expression increased in response to tibial injury, however, loss of Metrnl expression did not affect the amount of bone deposited within the healing tissue nor did it change the structural parameters of healing tissue. This work identifies Metrnl as a dispensable molecule for skeletal development. However, the osteoinductive capabilities of Metrnl may be utilized to modulate osteoblast differentiation in cell-based orthopedic therapies.


Subject(s)
Fracture Healing , Nerve Growth Factors , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factors/metabolism , Osteoblasts/metabolism
7.
Nat Metab ; 3(10): 1277-1279, 2021 10.
Article in English | MEDLINE | ID: mdl-34621078

Subject(s)
Career Choice , Exercise , Humans
8.
J Am Coll Cardiol ; 78(11): 1166-1187, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34503685

ABSTRACT

Exercise intolerance (EI) is the primary manifestation of chronic heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure among older individuals. The recent recognition that HFpEF is likely a systemic, multiorgan disorder that shares characteristics with other common, difficult-to-treat, aging-related disorders suggests that novel insights may be gained from combining knowledge and concepts from aging and cardiovascular disease disciplines. This state-of-the-art review is based on the outcomes of a National Institute of Aging-sponsored working group meeting on aging and EI in HFpEF. We discuss aging-related and extracardiac contributors to EI in HFpEF and provide the rationale for a transdisciplinary, "gero-centric" approach to advance our understanding of EI in HFpEF and identify promising new therapeutic targets. We also provide a framework for prioritizing future research, including developing a uniform, comprehensive approach to phenotypic characterization of HFpEF, elucidating key geroscience targets for treatment, and conducting proof-of-concept trials to modify these targets.


Subject(s)
Exercise Tolerance , Heart Failure, Diastolic/physiopathology , Aging/physiology , Animals , Humans
9.
Cells ; 10(6)2021 06 08.
Article in English | MEDLINE | ID: mdl-34201101

ABSTRACT

Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.


Subject(s)
Aging/metabolism , Apoptosis , Autophagy , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Animals , Cellular Senescence , Humans , Signal Transduction
10.
Aging Cell ; 20(8): e13412, 2021 08.
Article in English | MEDLINE | ID: mdl-34327802

ABSTRACT

West Nile virus (WNV) is an emerging pathogen that causes disease syndromes ranging from a mild flu-like illness to encephalitis. While the incidence of WNV infection is fairly uniform across age groups, the risk of lethal encephalitis increases with advanced age. Prior studies have demonstrated age-related, functional immune deficits that limit systemic antiviral immunity and increase mortality; however, the effect of age on antiviral immune responses specifically within the central nervous system (CNS) is unknown. Here, we show that aged mice exhibit increased peripheral organ and CNS tissue viral burden, the latter of which is associated with alterations in activation of both myeloid and lymphoid cells compared with similarly infected younger animals. Aged mice exhibit lower MHCII expression by microglia, and higher levels of PD1 and lower levels of IFNγ expression by WNV-specific CD8+ T cells in the CNS and CD8+ CD45+ cells. These data indicate that the aged CNS exhibits limited local reactivation of T cells during viral encephalitis, which may lead to reduced virologic control at this site.


Subject(s)
Central Nervous System/physiopathology , Immunity/genetics , West Nile Fever/physiopathology , Aging , Animals , Male , Mice
11.
Front Cell Dev Biol ; 9: 656604, 2021.
Article in English | MEDLINE | ID: mdl-34136478

ABSTRACT

Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional status, mechanical stimuli, repair programs, hormones, and growth factors. The molecular aspects of protein synthesis are centered around the mTORC1 complex. However, the intricacies of mTORC1 regulation, both up and downstream, have expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique tissue, having to coordinate between temporal changes in myofiber metabolism and hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal muscle manages the push and pull between anabolic and catabolic pathways through key regulatory proteins to promote energy production in times of nutrient deprivation or activate anabolic pathways in times of nutrient availability and anabolic stimuli. Branched-chain amino acids (BCAAs) can be used for both energy production and signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with energetic and anabolic processes, converging at several points along their respective pathways. The fate of intramuscular BCAAs adds another layer of regulation, which has consequences to promote or inhibit muscle fiber protein anabolism. This review will outline the general mechanisms of muscle protein synthesis and describe how metabolic pathways can regulate this process. Lastly, we will discuss how BCAA availability and demand coordinate with synthesis mechanisms and identify key factors involved in intramuscular BCAA trafficking.

12.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636133

ABSTRACT

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Subject(s)
Coinfection , Nematospiroides dubius/physiology , Signal Transduction , Strongylida Infections/pathology , West Nile virus/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Disease Susceptibility , Intestinal Mucosa/parasitology , Intestinal Mucosa/virology , Mice , Mice, Inbred C57BL , Neurons/parasitology , Neurons/virology , Receptors, Interleukin-4/metabolism , STAT6 Transcription Factor/genetics , Severity of Illness Index , Strongylida Infections/parasitology
13.
Mech Ageing Dev ; 195: 111443, 2021 04.
Article in English | MEDLINE | ID: mdl-33529682

ABSTRACT

Caloric restriction (CR) can prolong aged skeletal muscle function, yet the molecular mechanisms are not completely understood. We performed phosphoproteomic analysis on muscle from young and old mice fed an ad libitum diet, and old mice fed a CR diet. CR promoted a youthful phosphoproteomic signature, suppressing several known "pro-aging" pathways including Protein kinase A (PKA). This study validates global signaling changes in skeletal muscle during CR.


Subject(s)
Aging/physiology , Caloric Restriction/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Muscle, Skeletal , Phosphoproteins/metabolism , Proteomics/methods , Rejuvenation/physiology , Animals , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Principal Component Analysis/methods , Regeneration/physiology , Signal Transduction , Time
14.
J Appl Physiol (1985) ; 130(3): 853-864, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33411638

ABSTRACT

Rheumatoid arthritis (RA) is a systemic inflammatory arthritis impacting primarily joints and cardiac and skeletal muscle. RA's distinct impact on cardiac and skeletal muscle tissue is suggested by studies showing that new RA pharmacologic agents strongly improve joint inflammation, but have little impact on RA-associated mortality, cardiovascular disease, and sarcopenia. Thus, the objective is to understand the distinct effects of RA on cardiac and skeletal muscle, and to therapeutically target these tissues through endurance-based exercise as a way to improve RA mortality and morbidity. We utilize the well-characterized RA mouse model, the K/BxN mouse, to investigate cardiac and skeletal muscle pathologies, including the use of wheel-running exercise to mitigate these pathologies. Strikingly, we found that K/BxN mice, like patients with RA, also exhibit both cardiac and skeletal muscle myopathies that were correlated with circulating IL-6 levels. Three months of wheel-running exercise significantly improved K/BxN joint swelling and reduced systemic IL-6 concentrations. Importantly, there were morphological, gene expression, and functional improvements in both the skeletal muscle and cardiac myopathies with exercise. The K/BxN mouse model of RA recapitulated important RA clinical comorbidities, including altered joint, cardiac and skeletal muscle function. These morphological, molecular, and functional alterations were mitigated with regular exercise, thus suggesting exercise as a potential therapeutic intervention to lessen disease activity in the joint and the peripheral tissues, including the heart and skeletal muscle.NEW & NOTEWORTHY RA, even when controlled, is associated with skeletal muscle weakness and greater risk of cardiovascular disease (CVD). Using exercise as a therapeutic against, the progression of RA is often avoided due to fear of worsening RA pathology. We introduce the K/BxN mouse as an RA model to study both myocardial and skeletal muscle dysfunction. We show that endurance exercise can improve joint, cardiac, and skeletal muscle function in K/BxN mice, suggesting exercise may be beneficial for patients with RA.


Subject(s)
Arthritis, Rheumatoid , Muscle, Skeletal , Animals , Disease Models, Animal , Exercise Therapy , Heart , Humans , Mice
15.
Nat Metab ; 2(3): 278-289, 2020 03.
Article in English | MEDLINE | ID: mdl-32694780

ABSTRACT

The immune system plays a multifunctional role throughout the regenerative process, regulating both pro-/anti-inflammatory phases and progenitor cell function. In the present study, we identify the myokine/cytokine Meteorin-like (Metrnl) as a critical regulator of muscle regeneration. Mice genetically lacking Metrnl have impaired muscle regeneration associated with a reduction in immune cell infiltration and an inability to transition towards an anti-inflammatory phenotype. Isochronic parabiosis, joining wild-type and whole-body Metrnl knock-out (KO) mice, returns Metrnl expression in the injured muscle and improves muscle repair, providing supportive evidence for Metrnl secretion from infiltrating immune cells. Macrophage-specific Metrnl KO mice are also deficient in muscle repair. During muscle regeneration, Metrnl works, in part, through Stat3 activation in macrophages, resulting in differentiation to an anti-inflammatory phenotype. With regard to myogenesis, Metrnl induces macrophage-dependent insulin-like growth factor 1 production, which has a direct effect on primary muscle satellite cell proliferation. Perturbations in this pathway inhibit efficacy of Metrnl in the regenerative process. Together, these studies identify Metrnl as an important regulator of muscle regeneration and a potential therapeutic target to enhance tissue repair.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics
16.
17.
J Am Geriatr Soc ; 68(1): 31-38, 2020 01.
Article in English | MEDLINE | ID: mdl-31791114

ABSTRACT

This report summarizes the presentations and recommendations of the eleventh annual American Geriatrics Society and National Institute on Aging research conference, "Osteoporosis and Soft Tissue (Muscle/Fat) Disorders," on March 11-12, 2019, in Bethesda, Maryland. Falls, fractures, and sarcopenia have a major impact on health in older adults, and they are interconnected by known risk factors. The link between osteoporosis, which is common in older adults, and the risk of falls is well known. Sarcopenia, the age-related decline in skeletal muscle mass and function, is also associated with an increased risk of falls and fractures because it reduces strength and leads to functional limitations. In addition to increasing the risk of falls, sarcopenia and osteoporosis can lead to frailty, reduced quality of life, morbidity, and mortality. The conference highlighted the impact of bone and soft tissue disorders on quality of life, morbidity, and mortality in older adults. Presenters described factors that contribute to these disorders; health disparities experienced by various subpopulations; and promising biological, pharmacologic, and behavioral interventions to prevent or treat these disorders. The workshop identified many research gaps and questions along with research recommendations that have the potential to enhance the prospect of healthy aging and improved quality of life for older adults. J Am Geriatr Soc 68:31-38, 2019.


Subject(s)
Consensus Development Conferences as Topic , Healthcare Disparities , Osteoporosis/therapy , Sarcopenia/therapy , Soft Tissue Injuries/therapy , Accidental Falls/prevention & control , Aged , Aged, 80 and over , Geriatrics , Humans , Maryland , National Institute on Aging (U.S.) , Quality of Life/psychology , Risk Factors , United States
18.
J Infect Dis ; 221(9): 1506-1517, 2020 04 07.
Article in English | MEDLINE | ID: mdl-31616920

ABSTRACT

BACKGROUND: Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract has raised concerned for potential damaging effects on function. Animal studies have demonstrated that ZIKV virus can infect and damage the testis and epididymis, and these results has been correlated to lower sperm counts in ZIKV-infected humans. The prostate plays a vital role in the male reproductive tract, with acute and chronic prostatitis linked to male infertility. METHODS: In this study, we evaluated the effects of ZIKV virus on the prostate in mice and nonhuman primates. RESULTS: In mice, ZIKV infected the prostate and triggered inflammation that persisted even after virus clearance. Evidence of chronic prostatitis associated with ZIKV infection remained for several months. Similar histological findings were observed in the prostate of ZIKV-infected rhesus macaques. CONCLUSIONS: These studies establish that ZIKV replicates in the prostate and can cause acute and chronic inflammatory and proliferative changes in mouse and nonhuman primate models.


Subject(s)
Prostatitis/virology , Testis/virology , Zika Virus Infection/complications , Acute Disease , Animals , Chronic Disease , Disease Models, Animal , Epididymis , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Prostatitis/pathology , Semen/virology , Testis/pathology , Zika Virus , Zika Virus Infection/transmission
19.
Front Physiol ; 10: 1363, 2019.
Article in English | MEDLINE | ID: mdl-31736784

ABSTRACT

Although both exercise and thyroid hormone (TH) status can cause cellular and metabolic changes in skeletal muscle, the impact of TH status on exercise-associated changes is not well understood. Here, we examined the effects of TH status on muscle fiber type, cell signaling, and metabolism in a rabbit model of exercise training - chronic motor nerve stimulation (CMNS). Five rabbits were rendered hypothyroid for 7-8 weeks and three rabbits were made hyperthyroid for 2 weeks prior to CMNS of the left peroneal nerve for 10 days. We then measured markers of muscle fiber type, autophagy, and nutrient- or energy-sensing proteins, and metabolic intermediates. CMNS increased MHC-I expression in hypothyroid rabbits, whereas it was unchanged in hyperthyroid rabbits. CMNS also increased p-AMPK, p-ATGL, CPT-1α, p-Akt, GLUT4, and p-70S6K in hypothyroid rabbits. In contrast, p-AMPK and p-AKT were increased at baseline in hyperthyroid rabbits, but CMNS did not further increase them or any of the other markers. CMNS also increased TCA cycle and acylcarnitine metabolites in hypothyroid rabbits; whereas, acylcarnitines were already elevated in hyperthyroid rabbits, and were only slightly increased further by CMNS. In summary, CMNS effects on cell signaling and metabolism of skeletal muscle were more pronounced in the hypothyroid than the hyperthyroid state. Interestingly, in the hypothyroid state, CMNS caused concomitant activation of two signaling pathways that are usually reciprocally regulated - AMPK and mTOR signaling - which manifested as increased ß-oxidation, MHC-I expression, and protein synthesis. Thus, our findings provide insight into the role of TH status on exercise response in muscle. Our observations suggest that TH status of patients may be an important determinant and predictor of their response to exercise training in skeletal muscle.

20.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534056

ABSTRACT

Age is a well-established risk factor for impaired bone fracture healing. Here, we identify a role for apolipoprotein E (ApoE) in age-associated impairment of bone fracture healing and osteoblast differentiation, and we investigate the mechanism by which ApoE alters these processes. We identified that, in both humans and mice, circulating ApoE levels increase with age. We assessed bone healing in WT and ApoE-/- mice after performing tibial fracture surgery: bone deposition was higher within fracture calluses from ApoE-/- mice. In vitro recombinant ApoE (rApoE) treatment of differentiating osteoblasts decreased cellular differentiation and matrix mineralization. Moreover, this rApoE treatment decreased osteoblast glycolytic activity while increasing lipid uptake and fatty acid oxidation. Using parabiosis models, we determined that circulating ApoE plays a strong inhibitory role in bone repair. Using an adeno-associated virus-based siRNA system, we decreased circulating ApoE levels in 24-month-old mice and demonstrated that, as a result, fracture calluses from these aged mice displayed enhanced bone deposition and mechanical strength. Our results demonstrate that circulating ApoE as an aging factor inhibits bone fracture healing by altering osteoblast metabolism, thereby identifying ApoE as a new therapeutic target for improving bone repair in the elderly.


Subject(s)
Aging/blood , Apolipoproteins E/blood , Apolipoproteins E/genetics , Fracture Healing/physiology , Osteoblasts/physiology , Tibial Fractures/physiopathology , Adult , Age Factors , Aged , Aged, 80 and over , Aging/physiology , Animals , Apolipoproteins E/antagonists & inhibitors , Bony Callus/diagnostic imaging , Bony Callus/drug effects , Bony Callus/physiopathology , Calcification, Physiologic/drug effects , Calcification, Physiologic/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Cohort Studies , Dependovirus/genetics , Disease Models, Animal , Female , Fracture Healing/drug effects , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Mice , Mice, Knockout, ApoE , Middle Aged , Osteoblasts/drug effects , Primary Cell Culture , RNA, Small Interfering/genetics , Recombinant Proteins/administration & dosage , Signal Transduction/drug effects , Signal Transduction/genetics , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...