Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chem Commun (Camb) ; 57(62): 7713-7716, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34259683

ABSTRACT

A Ru(ii) intercalating complex capped with a Mn(i) photoCORM allows for a new mode of DNA intercalator delivery. The steric bulk of the Mn(i) photoCORM inhibits intercalation in the dark, and visible light irradiation (470 nm) dissociates the photoCORM, allowing for DNA intercalation of the Ru(ii) complex.


Subject(s)
Intercalating Agents/chemistry , Manganese/chemistry , Photochemical Processes , Ruthenium/chemistry , Coordination Complexes/chemistry , DNA/chemistry
2.
Inorg Chem ; 57(18): 11616-11625, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30160480

ABSTRACT

Two diimine-bridged Ru(II),Mn(I) complexes with a [(bpy)2Ru(BL)Mn(CO)3Br]2+ architecture, where bpy = 2,2'-bipyridine and BL = 2,3-bis(2-pyridyl)pyrazine (dpp; Ru(dpp)Mn) or 2,2'-bipyrimidine (bpm; Ru(bpm)Mn), were designed to both dissociate multiple equivalents of CO and produce 1O2 when irradiated with visible light. Analysis of the complexes by Fourier transform infrared (FTIR) spectroscopy and cyclic voltammetry suggest a stronger π-accepting ability for bpm compared to that of dpp. Both complexes absorb light throughout the UV and visible regions with lowest energy absorption bands comprising overlapping Ru(dπ)→BL(π*) and Mn(dπ)→BL(π*) singlet metal-to-ligand charge transfer (1MLCT) and Br(p)→dpp(π*) singlet halide-to-ligand charge transfer (1XLCT) transitions. This lowest energy band is centered at 510 nm (ε = 12 000 M-1cm-1) for Ru(dpp)Mn and 553 nm (ε = 3240 M-1cm-1) for Ru(bpm)Mn, and the absorption band extends to nearly 700 nm in each case. Irradiation with visible light (both 470 and 627 nm) releases all three CO ligands, as observed by a combination of UV-vis, FTIR, and gas chromatography. The exchange of the first CO ligand with a solvent molecule occurs more efficiently for Ru(dpp)Mn (Φ470 = 0.22 ± 0.03 in H2O; 0.37 ± 0.06 in CH3CN) than for Ru(bpm)Mn (Φ470 = 0.049 ± 0.008 in H2O and 0.16 ± 0.03 in CH3CN), and the CO dissociation efficiency is unaffected by irradiation wavelength. The differences between Ru(dpp)Mn and Ru(bpm)Mn are proposed to result from the variation in electron density distribution across each formally reduced BL in the Mn(dπ)→BL(π*) 1MLCT excited state based on the nature of BL. Exhaustive photolysis causes the decomplexation of oxidized Mn(II), and the resulting [(bpy)2Ru(BL)]2+ complexes produce 1O2 with quantum yields (ΦΔ) of 0.37 ± 0.03 and 0.16 ± 0.01 for Ru(dpp) and Ru(bpm), respectively, with 460 nm irradiation. This bimetallic architecture presents the opportunity to use visible light to codeliver both CO and 1O2, both of which have biological relevance in photoactivated therapeutics, with spatiotemporal control.


Subject(s)
Carbon Monoxide/chemistry , Light , Manganese/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Spectroscopy, Fourier Transform Infrared
3.
Chem Commun (Camb) ; 54(41): 5193-5196, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29707728

ABSTRACT

Ru(ii)-polypyridyl cages with sterically bulky bidentate ligands provide efficient photochemical release of the anticancer drug imatinib using low energy visible light, imparting spatiotemporal control over drug bioavailability. The light-activated drug release is maintained when the Ru(ii) cage is covalently coupled to an antibody, which is expected to localize selectively on the tumor.


Subject(s)
Antibodies/chemistry , Coordination Complexes/chemistry , Imatinib Mesylate/chemistry , Light , Photochemical Processes , Pyridines/chemistry , Ruthenium/chemistry , Molecular Structure
4.
Dalton Trans ; 47(34): 11851-11858, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-29741184

ABSTRACT

A new complex, [Ru(tpy)(dppn)(Cbz-Leu-NHCH2CN)]2+ (1, tpy = 2,2':6',2''-terpyridine, dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) was synthesized and its photochemical properties were investigated. This complex undergoes photorelease of the Cbz-Leu-NHCH2CN ligand, a known cathepsin K inhibitor, with a quantum yield, Φ450, of 0.0012(4) in water (λirr = 450 nm). In addition, 1 sensitizes the production of singlet oxygen upon visible light irradiation with quantum yield, ΦΔ, of 0.64(3) in CH3OH. The photophysical properties of 1 were compared with those of [Ru(tpy)(bpy)(Cbz-Leu-NHCH2CN)]2+ (2, bpy = 2,2'-bipyridine), [Ru(tpy)(dppn)(CH3CN)]2+ (3), and [Ru(tpy)(bpy)(CH3CN)]2+ (4) to evaluate the effect of the release of the Cbz-Leu-NHCH2CN inhibitor relative to the CH3CN ligand, as well as the role of dppn as the bidentate ligand for 1O2 production instead of bpy. Nanosecond transient absorption spectroscopy confirms the formation of the long-lived dppn-centered 3ππ* state in 1 and 3 with a maximum at ∼540 nm and τ ∼20 µs in deaerated acetonitrile. Complexes 1 and 3 are able to cause photoinduced damage to DNA (λirr ≥ 395 nm), whereas 2 and 4 do not photocleave DNA under similar experimental conditions. These results suggest that 1 is a promising agent for dual activity, both releasing a drug and producing singlet oxygen, and is poised to exhibit enhanced biological activity in phototochemotherapy upon irradiation with visible light.


Subject(s)
Cathepsin K/metabolism , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Photochemotherapy , Ruthenium/chemistry , Singlet Oxygen/metabolism , Acetonitriles/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Methanol/chemistry , Neoplasms/drug therapy , Phenazines/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Plasmids/metabolism , Pyridines/chemistry , Water/chemistry
5.
Chem Commun (Camb) ; 53(26): 3673-3676, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28304025
6.
Inorganica Chim Acta ; 454: 7-20, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28042171

ABSTRACT

This article is a short review that presents a short review of photosubstitution reactions of Ru(II) imine complexes and illustrates their use in the development of therapeutic agents. The review begins with an overview of the photophysical behavior and common photoreactions of Ru(II) imine complexes, with select examples from the literature since the 1960s. It is followed by a more detailed picture of the application of knowledge gained over the years in the development of Ru(II) complexes for photobiology and photodynamic therapy.

7.
Inorganica Chim Acta ; 454: 149-154, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-30026633

ABSTRACT

A new Rh2(II,II) complex containing one dppn (benzo[i]dipyrido[3,2-a:2,3-c]phenazine) ligand with an extended π-system, cis-H,H-[Rh2(OCCH3NH)2(dppn)(CH3CN)2]2+ (2), was synthesized and characterized. The dppn ligand, which serves as a DNA base pair intercalator, chelates to a single Rh center and is positioned trans to the amidato N atoms of the bridging acetamide ligand. This ligand also possesses a low-lying dppn-centered 3ππ* state that is advantageous for the sensitization of singlet oxygen (1O2), which complex 2 produced with a quantum yield, Φ 1O2460, of 0.22(7) with 460 nm excitation. In addition, one equivalent of CH3CN is released from 2 upon irradiation with visible light, generating cis-H,H-[Rh2(OCCH3NH)2(dppn)(H2O)(CH3CN)]2+ in aqueous media with photoinduced ligand exchange quantum yield, ΦLE450, of 0.0033(1). Thermal denaturation and relative viscosity studies are consistent with a π-stacking interaction of 2 with double-stranded DNA together with covalent binding to the duplex upon irradiation with visible light. Therefore, 2 exhibits dual photoreactivity towards DNA, making it potentially useful for photochemotherapy with enhanced activity relative to compounds able to achieve only one mode of cell death upon irradiation.

8.
Chem Commun (Camb) ; 52(85): 12590-12593, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27711349

ABSTRACT

Photochemical control over irreversible inhibition was shown using Ru(ii)-caged inhibitors of cathepsin L. Levels of control were dependent on where the Ru(ii) complex was attached to the organic inhibitor, reaching >10 : 1 with optimal placement. A new strategy for photoreleasing Ru(ii) fragments from inhibitor-enzyme conjugates is also reported.

9.
Inorg Chem ; 55(14): 6968-79, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27355786

ABSTRACT

Four complexes of the general formula [Ru(L)(CH3CN)2](PF6)2, [L = TPA (5), MeTPA (6), Me2TPA (7), and Me3TPA (8)] [TPA = tris[(pyridin-2-yl)methyl]amine, where methyl groups were introduced consecutively onto the 6-position of py donors of TPA, were prepared and characterized by various spectroscopic techniques and mass spectrometry. While 5 and 8 were isolated as single stereoisomers, 6 and 7 were isolated as mixtures of stereoisomers in 2:1 and 1.5:1 ratios, respectively. Steric effects on ground state stability and thermal and photochemical reactivities were studied for all four complexes using (1)H NMR and electronic absorption spectroscopies and computational studies. These studies confirmed that the addition of steric bulk accelerates photochemical and thermal nitrile release.

10.
Chemistry ; 22(11): 3704-8, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26715085

ABSTRACT

The new complex [Ru(pydppn)(biq)(py)](2+) (1) undergoes both py photodissociation in CH3CN with Φ500 =0.0070(4) and (1)O2 production with ΦΔ =0.75(7) in CH3 OH from a long-lived (3) ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2',3'-c]phenazine; biq = 2,2'-biquinoline; py=pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)](2+) (3) (tpy=2,2':6',2''-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying (3) ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter (3) MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)](2+) (2) (bpy=2,2'-bipyridine) are attributed to a competitive excited state population between the (3) LF states involved in ligand dissociation and the long-lived (3) ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy.


Subject(s)
Organometallic Compounds/chemistry , Pyridines/chemistry , Quinolines/chemistry , Ruthenium/chemistry , Electrochemistry , Ligands , Photochemotherapy
11.
Inorg Chem ; 55(1): 10-2, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26670781

ABSTRACT

Three complexes of the general formula [Ru(TPA)L2](PF6)2 [TPA = tris(2-pyridylmethyl)amine], where L = pyridine (1), nicotinamide (2), and imidazole (3), were prepared and characterized spectroscopically. X-ray crystallographic data were obtained for 1 and 3. Complexes 1-3 show strong absorption in the visible region and selective release of heterocycles upon irradiation with visible light. Time-dependent density functional theory calculations are consistent with the presence of singlet metal-to-ligand charge-transfer bands in the visible region in 1-3. Caged heterocycles 1-3 are highly stable in solution in the dark, including in cell growth media. Cell viability data show no signs of toxicity of 1-3 against PC-3 cells at concentrations up to 100 µM under light and dark conditions, consistent with Ru(TPA) acting as a nontoxic and effective photocaging group for aromatic heterocycles.


Subject(s)
Heterocyclic Compounds/chemistry , Light , Pyridines/chemistry , Ruthenium Compounds/chemistry , Crystallography, X-Ray , Models, Molecular
12.
PLoS One ; 10(11): e0142527, 2015.
Article in English | MEDLINE | ID: mdl-26562785

ABSTRACT

The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells. To image, localize and quantify collagen IV degradation in real-time we used 3D pathomimetic breast cancer models designed to mimic the in vivo microenvironment of breast cancers. We further report the synthesis and characterization of a caged version of compound 1, [Ru(bpy)2(1)2](BF4)2 (compound 2), which can be photoactivated with visible light. Upon light activation, compound 2, like compound 1, inhibited cathepsin B activity and pericellular collagen IV degradation by the 3D pathomimetic models of living breast cancer cells, without causing toxicity. We suggest that caged inhibitor 2 is a prototype for cathepsin B inhibitors that can control both the site and timing of inhibition in cancer.


Subject(s)
Cathepsin B/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Ruthenium Compounds/pharmacology , Tumor Microenvironment/drug effects , Biocatalysis/drug effects , Cathepsin B/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Collagen Type IV/metabolism , Cysteine Proteinase Inhibitors/chemistry , Diagnostic Imaging/methods , Dose-Response Relationship, Drug , Humans , Light , Microscopy, Confocal , Molecular Structure , Photochemical Processes/radiation effects , Proteolysis/drug effects , Ruthenium Compounds/chemistry , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL