Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Antimicrob Agents Chemother ; 68(4): e0101523, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470112

ABSTRACT

Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Humans , Models, Biological , SARS-CoV-2 , Hemorrhagic Fever, Ebola/drug therapy , Drug Combinations
2.
medRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38352583

ABSTRACT

In a pivotal trial (EPIC-HR), a 5-day course of oral ritonavir-boosted nirmatrelvir, given early during symptomatic SARS-CoV-2 infection (within three days of symptoms onset), decreased hospitalization and death by 89.1% and nasal viral load by 0.87 log relative to placebo in high-risk individuals. Yet, nirmatrelvir/ritonavir failed as post-exposure prophylaxis in a trial, and frequent viral rebound has been observed in subsequent cohorts. We developed a mathematical model capturing viral-immune dynamics and nirmatrelvir pharmacokinetics that recapitulated viral loads from this and another clinical trial (PLATCOV). Our results suggest that nirmatrelvir's in vivo potency is significantly lower than in vitro assays predict. According to our model, a maximally potent agent would reduce the viral load by approximately 3.5 logs relative to placebo at 5 days. The model identifies that earlier initiation and shorter treatment duration are key predictors of post-treatment rebound. Extension of treatment to 10 days for Omicron variant infection in vaccinated individuals, rather than increasing dose or dosing frequency, is predicted to lower the incidence of viral rebound significantly.

3.
Annu Rev Virol ; 10(1): 139-161, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774128

ABSTRACT

There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.


Subject(s)
Virus Internalization , Viruses , Animals , Humans , Viral Fusion Proteins/chemistry , Membrane Fusion , Viruses/genetics , Lipids , Mammals/metabolism
4.
Microbiol Spectr ; : e0190823, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728342

ABSTRACT

Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.

5.
J Manag Care Spec Pharm ; 29(9): 1021-1029, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610114

ABSTRACT

BACKGROUND: Diabetic peripheral neuropathy, a common comorbidity of diabetes, is a neurodegenerative disorder that targets sensory, autonomic, and motor nerves frequently associated with painful diabetic neuropathy (PDN). PDN carries an economic burden as the result of reduced work and productivity. A recent multicenter randomized controlled trial, SENZA-PDN (NCT03228420), assessed the impact of high-frequency (10 kHz) spinal cord stimulation (SCS) on pain relief. The effects of high-frequency SCS on health care resource utilization and medical costs are not known. OBJECTIVE: To evaluate the effect of high-frequency (10 kHz) SCS on health care resource utilization (HRU) and medical costs in patients with PDN using data from the SENZA-PDN trial. METHODS: Participants with PDN were randomly assigned 1:1 to receive either 10 kHz SCS plus conventional medical management (CMM) (SCS treatment group) or CMM alone (CMM treatment group). Patient outcomes and HRU up to the 6-month follow-up are reported here. Costs (2020 USD) for each service was estimated based on publicly available Medicare fee schedules, Medicare claims data, and literature. HRU metrics of inpatient and outpatient contacts and costs are reported as means and SDs. Univariate and bivariate analyses were used to compare SCS and CMM treatment groups at 6 months. RESULTS: At 6-month follow up, the SCS arm experienced approximately half the mean rate of hospitalizations per patient compared with the CMM treatment group (0.08 vs 0.15; P = 0.066). The CMM treatment group's total health care costs per patient were approximately 51% higher compared with the SCS treatment group (equivalent to mean annual cost per patient of $9,532 vs $6,300). CONCLUSIONS: Our analysis of the SENZA-PDN trial indicates that the addition of 10 kHz SCS therapy results in lower rates of hospitalization and consequently lower health care costs among patients with PDN compared with those receiving conventional management alone.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Spinal Cord Stimulation , United States , Humans , Aged , Diabetic Neuropathies/therapy , Medicare , Patient Acceptance of Health Care , Health Care Costs
6.
Diabetes Res Clin Pract ; 203: 110865, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536514

ABSTRACT

AIMS: To evaluate the long-term efficacy of high-frequency (10 kHz) spinal cord stimulation (SCS) for treating refractory painful diabetic neuropathy (PDN). METHODS: The SENZA-PDN study was a prospective, multicenter, randomized controlled trial that compared conventional medical management (CMM) alone with 10 kHz SCS plus CMM (10 kHz SCS+CMM) in 216 patients with refractory PDN. After 6 months, participants with insufficient pain relief could cross over to the other treatment. In total, 142 patients with a 10 kHz SCS system were followed for 24 months, including 84 initial 10 kHz SCS+CMM recipients and 58 crossovers from CMM alone. Assessments included pain intensity, health-related quality of life (HRQoL), sleep, and neurological function. Investigators assessed neurological function via sensory, reflex, and motor tests. They identified a clinically meaningful improvement relative to the baseline assessment if there was a significant persistent improvement in neurological function that impacted the participant's well-being and was attributable to a neurological finding. RESULTS: At 24 months, 10 kHz SCS reduced pain by a mean of 79.9% compared to baseline, with 90.1% of participants experiencing ≥50% pain relief. Participants had significantly improved HRQoL and sleep, and 65.7% demonstrated clinically meaningful neurological improvement. Five (3.2%) SCS systems were explanted due to infection. CONCLUSIONS: Over 24 months, 10 kHz SCS provided durable pain relief and significant improvements in HRQoL and sleep. Furthermore, the majority of participants demonstrated neurological improvement. These long-term data support 10 kHz SCS as a safe and highly effective therapy for PDN. TRIAL REGISTRATION: ClincalTrials.gov Identifier, NCT03228420.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Diabetic Neuropathies/therapy , Quality of Life , Prospective Studies , Pain , Treatment Outcome
7.
ACS Infect Dis ; 9(4): 773-784, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36946615

ABSTRACT

The host restriction factor, Serinc5, incorporates into budding HIV particles and inhibits their infection by an incompletely understood mechanism. We have previously reported that Serinc5 but not its paralogue, Serinc2, blocks HIV cell entry by membrane fusion, specifically by inhibiting fusion pore formation and dilation. A body of work suggests that Serinc5 may alter the conformation and clustering of the HIV fusion protein, Env. To contribute an additional perspective to the developing model of Serinc5 restriction, we assessed Serinc2 and Serinc5's effects on HIV pseudoviral membranes. By measuring pseudoviral membrane thickness via cryo-electron microscopy and order via the fluorescent dye, FLIPPER-TR, Serinc5 was found to increase membrane heterogeneity, skewing the distribution toward a larger fraction of the viral membrane in an ordered phase. We also directly observed for the first time the coexistence of membrane domains within individual viral membrane envelopes. Using a total internal reflection fluorescence-based single particle fusion assay, we found that treatment of HIV pseudoviral particles with phosphatidylethanolamine (PE) rescued HIV pseudovirus fusion from restriction by Serinc5, which was accompanied by decreased membrane heterogeneity and order. This effect was specific for PE and did not depend on acyl chain length or saturation. Together, these data suggest that Serinc5 alters multiple interrelated properties of the viral membrane─lipid chain order, rigidity, line tension, and lateral pressure─which decrease the accessibility of fusion intermediates and disfavor completion of fusion. These biophysical insights into Serinc5 restriction of HIV infectivity could contribute to the development of novel antivirals that exploit the same weaknesses.


Subject(s)
HIV Infections , Membrane Proteins , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cryoelectron Microscopy , Membrane Fusion , Lipids
8.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 2): 45-50, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36748341

ABSTRACT

Niemann-Pick C1 protein (NPC1) is a membrane protein that primarily resides in late endosomes and lysosomes, and plays an important role in cholesterol homeostasis in the cell. The second luminal domain of NPC1 (NPC1-C) serves as the intracellular receptor for Ebola and Marburg viruses. Here, the recombinant production of nonglycosylated and glycosylated NPC1-C and a new crystal form of the nonglycosylated protein are reported. The crystals belonged to space group P21 and diffracted to 2.3 Šresolution. The structure is similar to other reported structures of NPC1-C, with differences observed in the protruding loops when compared with NPC1-C in complex with Ebola virus glycoprotein or NPC2.


Subject(s)
Membrane Glycoproteins , Niemann-Pick C1 Protein , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Niemann-Pick C1 Protein/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Crystallography, X-Ray , Glycoproteins/chemistry , Lysosomes/metabolism
9.
BMJ Open ; 13(1): e064248, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627161

ABSTRACT

INTRODUCTION: Rectal cancer is common with a 60% 5-year survival rate. Treatment usually involves surgery with or without neoadjuvant chemoradiotherapy or adjuvant chemotherapy. Sphincter saving curative treatment can result in debilitating changes to bowel function known as low anterior resection syndrome (LARS). There are currently no clear guidelines on the management of LARS with only limited evidence for different treatment modalities. METHODS AND ANALYSIS: Patients who have undergone an anterior resection for rectal cancer in the last 10 years will be approached for the study. The feasibility trial will take place in four centres with a 9-month recruitment window and 12 months follow-up period. The primary objective is to assess the feasibility of recruitment to the POLARiS trial which will be achieved through assessment of recruitment, retainment and follow-up rates as well as the prevalence of major LARS.Feasibility outcomes will be analysed descriptively through the estimation of proportions with confidence intervals. Longitudinal patient reported outcome measures will be analysed according to scoring manuals and presented descriptively with reporting graphically over time. ETHICS AND DISSEMINATION: Ethical approval has been granted by Wales REC1; Reference 22/WA/0025. The feasibility study is in the process of set up. The results of the feasibility trial will feed into the design of an expanded, international trial. TRIAL REGISTRATION NUMBER: CT05319054.


Subject(s)
Electric Stimulation Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Feasibility Studies , Low Anterior Resection Syndrome , Cohort Studies , Conservative Treatment , Postoperative Complications/therapy , Quality of Life , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
10.
Microbiol Spectr ; 10(5): e0333122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190406

ABSTRACT

Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Drug Combinations , Pyrimidines
11.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36305426

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Protein Interaction Maps , Nuclear Proteins , Transcription Factors , Antiviral Agents/pharmacology , Ubiquitin Thiolesterase , Cell Cycle Proteins
12.
Mayo Clin Proc Innov Qual Outcomes ; 6(4): 347-360, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35814185

ABSTRACT

Objective: To evaluate high-frequency (10-kHz) spinal cord stimulation (SCS) treatment in refractory painful diabetic neuropathy. Patients and Methods: A prospective, multicenter randomized controlled trial was conducted between Aug 28, 2017 and March 16, 2021, comparing conventional medical management (CMM) with 10-kHz SCS+CMM. The participants had hemoglobin A1c level of less than or equal to 10% and pain greater than or equal to 5 of 10 cm on visual analog scale, with painful diabetic neuropathy symptoms 12 months or more refractory to gabapentinoids and at least 1 other analgesic class. Assessments included measures of pain, neurologic function, and health-related quality of life (HRQoL) over 12 months with optional crossover at 6 months. Results: The participants were randomized 1:1 to CMM (n=103) or 10-kHz SCS+CMM (n=113). At 6 months, 77 of 95 (81%) CMM group participants opted for crossover, whereas none of the 10-kHz SCS group participants did so. At 12 months, the mean pain relief from baseline among participants implanted with 10-kHz SCS was 74.3% (95% CI, 70.1-78.5), and 121 of 142 (85%) participants were treatment responders (≥50% pain relief). Treatment with 10-kHz SCS improved HRQoL, including a mean improvement in the EuroQol 5-dimensional questionnaire index score of 0.136 (95% CI, 0.104-0.169). The participants also reported significantly less pain interference with sleep, mood, and daily activities. At 12 months, 131 of 142 (92%) participants were "satisfied" or "very satisfied" with the 10-kHz SCS treatment. Conclusion: The 10-kHz SCS treatment resulted in substantial pain relief and improvement in overall HRQoL 2.5- to 4.5-fold higher than the minimal clinically important difference. The outcomes were durable over 12 months and support 10-kHz SCS treatment in patients with refractory painful diabetic neuropathy. Trial registration: clincaltrials.gov Identifier: NCT03228420.

13.
iScience ; 25(4): 104112, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402870

ABSTRACT

Broadly effective antiviral therapies must be developed to be ready for clinical trials, which should begin soon after the emergence of new life-threatening viruses. Here, we pave the way towards this goal by reviewing conserved druggable virus-host interactions, mechanisms of action, immunomodulatory properties of available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interactions of BSAs with other antivirals. Based on the review, we concluded that the range of indications of BSAs can be expanded, and new pan- and cross-viral mono- and combinational therapies can be developed. We have also developed a new scoring algorithm that can help identify the most promising few of the thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to prioritize their development during the critical period between the identification of a new virus and the development of virus-specific vaccines, drugs, and therapeutic antibodies.

14.
Traffic ; 23(4): 221-234, 2022 04.
Article in English | MEDLINE | ID: mdl-35147273

ABSTRACT

Most enveloped viruses infect cells by binding receptors at the cell surface and undergo trafficking through the endocytic pathway to a compartment with the requisite conditions to trigger fusion with a host endosomal membrane. Broad categories of compartments in the endocytic pathway include early and late endosomes, which can be further categorized into subpopulations with differing rates of maturation and motility characteristics. Endocytic compartments have varying protein and lipid components, luminal ionic conditions and pH that provide uniquely hospitable environments for specific viruses to fuse. In order to characterize compartments that permit fusion, we studied the trafficking and fusion of viral particles pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) on their surface and equipped with a novel pH sensor and a fluorescent content marker to measure pH, motion and fusion at the single particle level in live cells. We found that the VSV-G particles fuse predominantly from more acidic and more motile endosomes, and that a significant fraction of particles is trafficked to more static and less acidic endosomes that do not support their fusion. Moreover, the fusion-supporting endosomes undergo directed motion.


Subject(s)
Vesicular Stomatitis , Virus Internalization , Animals , Endocytosis , Endosomes/metabolism , Glycoproteins/metabolism , Hydrogen-Ion Concentration , Vesicular Stomatitis/metabolism
15.
Lancet Infect Dis ; 22(5): 636-648, 2022 05.
Article in English | MEDLINE | ID: mdl-35090638

ABSTRACT

BACKGROUND: We evaluated our SARS-CoV-2 prefusion spike recombinant protein vaccine (CoV2 preS dTM) with different adjuvants, unadjuvanted, and in a one-injection and two-injection dosing schedule in a previous phase 1-2 study. Based on interim results from that study, we selected a two-injection schedule and the AS03 adjuvant for further clinical development. However, lower than expected antibody responses, particularly in older adults, and higher than expected reactogenicity after the second vaccination were observed. In the current study, we evaluated the safety and immunogenicity of an optimised formulation of CoV2 preS dTM adjuvanted with AS03 to inform progression to phase 3 clinical trial. METHODS: This phase 2, randomised, parallel-group, dose-ranging study was done in adults (≥18 years old), including those with pre-existing medical conditions, those who were immunocompromised (except those with recent organ transplant or chemotherapy) and those with a potentially increased risk for severe COVID-19, at 20 clinical research centres in the USA and Honduras. Women who were pregnant or lactating or, for those of childbearing potential, not using an effective method of contraception or abstinence, and those who had received a COVID-19 vaccine, were excluded. Participants were randomly assigned (1:1:1) using an interactive response technology system, with stratification by age (18-59 years and ≥60 years), rapid serodiagnostic test result (positive or negative), and high-risk medical conditions (yes or no), to receive two injections (day 1 and day 22) of 5 7mu;g (low dose), 10 7mu;g (medium dose), or 15 7mu;g (high dose) CoV2 preS dTM antigen with fixed AS03 content. All participants and outcome assessors were masked to group assignment; unmasked study staff involved in vaccine preparation were not involved in safety outcome assessments. All laboratory staff performing the assays were masked to treatment. The primary safety objective was to describe the safety profile in all participants, for each candidate vaccine formulation. Safety endpoints were evaluated for all randomised participants who received at least one dose of the study vaccine (safety analysis set), and are presented here for the interim study period (up to day 43). The primary immunogenicity objective was to describe the neutralising antibody titres to the D614G variant 14 days after the second vaccination (day 36) in participants who were SARS-CoV-2 naive who received both injections, provided samples at day 1 and day 36, did not have protocol deviations, and did not receive an authorised COVID-19 vaccine before day 36. Neutralising antibodies were measured using a pseudovirus neutralisation assay and are presented here up to 14 days after the second dose. As a secondary immunogenicity objective, we assessed neutralising antibodies in non-naive participants. This trial is registered with ClinicalTrials.gov (NCT04762680) and is closed to new participants for the cohort reported here. FINDINGS: Of 722 participants enrolled and randomly assigned between Feb 24, 2021, and March 8, 2021, 721 received at least one injection (low dose=240, medium dose=239, and high dose=242). The proportion of participants reporting at least one solicited adverse reaction (injection site or systemic) in the first 7 days after any vaccination was similar between treatment groups (217 [91%] of 238 in the low-dose group, 213 [90%] of 237 in the medium-dose group, and 218 [91%] of 239 in the high-dose group); these adverse reactions were transient, were mostly mild to moderate in intensity, and occurred at a higher frequency and intensity after the second vaccination. Four participants reported immediate unsolicited adverse events; two (one each in the low-dose group and medium-dose group) were considered by the investigators to be vaccine related and two (one each in the low-dose and high-dose groups) were considered unrelated. Five participants reported seven vaccine-related medically attended adverse events (two in the low-dose group, one in the medium-dose group, and four in the high-dose group). No vaccine-related serious adverse events and no adverse events of special interest were reported. Among participants naive to SARS-CoV-2 at day 36, 158 (98%) of 162 in the low-dose group, 166 (99%) of 168 in the medium-dose group, and 163 (98%) of 166 in the high-dose group had at least a two-fold increase in neutralising antibody titres to the D614G variant from baseline. Neutralising antibody geometric mean titres (GMTs) at day 36 for participants who were naive were 2189 (95% CI 1744-2746) for the low-dose group, 2269 (1792-2873) for the medium-dose group, and 2895 (2294-3654) for the high-dose group. GMT ratios (day 36: day 1) were 107 (95% CI 85-135) in the low-dose group, 110 (87-140) in the medium-dose group, and 141 (111-179) in the high-dose group. Neutralising antibody titres in non-naive adults 21 days after one injection tended to be higher than titres after two injections in adults who were naive, with GMTs 21 days after one injection for participants who were non-naive being 3143 (95% CI 836-11 815) in the low-dose group, 2338 (593-9226) in the medium-dose group, and 7069 (1361-36 725) in the high-dose group. INTERPRETATION: Two injections of CoV2 preS dTM-AS03 showed acceptable safety and reactogenicity, and robust immunogenicity in adults who were SARS-CoV-2 naive and non-naive. These results supported progression to phase 3 evaluation of the 10 7mu;g antigen dose for primary vaccination and a 5 7mu;g antigen dose for booster vaccination. FUNDING: Sanofi Pasteur and Biomedical Advanced Research and Development Authority.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adjuvants, Immunologic , Adolescent , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Lactation , Middle Aged , Recombinant Proteins , SARS-CoV-2 , Vaccines, Synthetic , Young Adult
17.
mBio ; 12(6): e0334721, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34933447

ABSTRACT

The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Drug Combinations , Animals , Coronavirus/classification , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Humans , Mice , Pandemics/prevention & control , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
18.
Colorectal Dis ; 23(12): 3262-3271, 2021 12.
Article in English | MEDLINE | ID: mdl-34747558

ABSTRACT

AIM: The use of standard CO2 for insufflation during laparoscopic colorectal surgery may be associated with cooling and drying of the peritoneal cavity, contributing to perioperative hypothermia. The aim of this work was the assess the feasibility of a study to compare insufflation of warmed, humidified CO2 (WHCO2) (using HumiGard, Fisher and Paykel Healthcare) with standard measures and its impact on the quality of recovery of surgical patients. METHOD: A single-centre, triple-blind, feasibility, randomized controlled trial (RCT) of adults scheduled for planned laparoscopic colorectal surgery. The primary outcome was recruitment. Secondary outcomes included feasibility of blinding, acceptability to patients and suitability of objective measures: patient-reported quality of recovery using a validated questionnaire (QoR-40), patient pain scores and semi-continuous core temperature measurements. RESULTS: Thirty-nine participants were randomized to either the WHCO2 group (n = 19) or standard care alone (n = 20). Recruitment to the study was successful and acceptable to patients. Blinding of the surgeons, patients and assessors was effective. Response rates to QoR-40 were high but ceiling effects were observed, indicating that the tool was unsuitable in this population. Fewer patients in the WHCO2 group reported postoperative nausea and vomiting (PONV) at days 1 (53% vs. 65%) and 3 (37% vs. 60%). The median hospital length of stay was 5.5 days in the standard care group and 4 days in the WHCO2 group. CONCLUSION: A study of WHCO2 for insufflation in laparoscopic colorectal surgery would be highly acceptable to both patients and researchers. Potential reductions in PONV and hospital length of stay in patients treated with WHCO2 merit further investigation. The design of the full-scale RCT will benefit from this feasibility study.


Subject(s)
Colorectal Neoplasms , Hypothermia , Insufflation , Laparoscopy , Adult , Carbon Dioxide , Feasibility Studies , Humans , Humidity , Hypothermia/etiology , Hypothermia/prevention & control , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control
19.
Viruses ; 13(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209034

ABSTRACT

Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three structurally unrelated proteins encoded by diverse retroviruses, human immunodeficiency virus type 1 (HIV-1) Nef, equine infectious anemia virus (EIAV) S2, and ecotropic murine leukemia virus (MLV) GlycoGag, disrupt SERINC5 antiviral activity by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., vesicular stomatitis virus glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and Mason-Pfizer monkey virus (M-PMV) virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. SERINC5 restricted virions pseudotyped with glycoproteins from several retroviruses, an orthomyxovirus, a rhabdovirus, a paramyxovirus, and an arenavirus. Infectivity of particles pseudotyped with HIV-1, amphotropic-MLV (A-MLV), or influenza A virus (IAV) glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. In contrast, particles pseudotyped with glycoproteins from M-PMV, parainfluenza virus 5 (PIV5), or rabies virus (RABV) were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 did not correlate with reduced SERINC5 incorporation into particles, route of viral entry, or absolute infectivity of the pseudotyped virions. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5.


Subject(s)
Host-Pathogen Interactions , Membrane Proteins/genetics , Viral Envelope Proteins , Virion/metabolism , Viruses/metabolism , HEK293 Cells , HIV-1/metabolism , Humans , Leukemia Virus, Murine/metabolism , Membrane Proteins/immunology , Retroviridae/classification , Retroviridae/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Virion/genetics , Virus Internalization , Viruses/chemistry , Viruses/classification , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...