Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biosci Rep ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37144562

ABSTRACT

Phosphoprotein phosphatases (PPPs) are a ubiquitous class of enzymes which dephosphorylate serine and threonine residues on substrate proteins involved in a wide variety of cellular processes. The active site of PPP enzymes are highly conserved with key residues coordinating the substrate phosphoryl group (the two R-clamp) and two metal ions necessary for catalysis. Because of the diverse number of roles that these enzymes play it is no surprise that they are highly regulated in the cell, often accomplished by binding regulatory subunits. These regulatory subunits are able to dictate substrate specificity, localization, and activity of the bound catalytic subunit. Eukaryotic PPP subtypes have been previously shown to manifest varying degrees of sensitivity to environmental toxins. We present here an evolutionary model which now rationalizes this data. Our re-examination of published structural evidence reveals that Eukaryotic PPP toxin-binding residues also interact with substrate binding residues (the two R-clamp) and ancient regulatory proteins. Such functional interactions could have stabilized PPP sequence early in Eukaryotic evolution, providing a stable target which was co-opted by toxins and their producer organisms.

2.
Front Plant Sci ; 9: 1032, 2018.
Article in English | MEDLINE | ID: mdl-30065742

ABSTRACT

Phospho-proteomic studies have confirmed that phosphorylation is a common mechanism to regulate protein function in the chloroplast, including the enzymes of starch metabolism. In addition to the photosynthetic machinery protein kinases (STN7 and STN8) and their cognate protein phosphatases PPH1 (TAP38) and PBCP, multiple other protein kinases and phosphatases have now been localized to the chloroplast. Here, we build a framework for understanding protein kinases and phosphatases, their regulation, and potential roles in starch metabolism. We also catalog mapped phosphorylation sites on proteins of chloroplast starch metabolism to illustrate the potential and mostly unknown roles of protein phosphorylation in the regulation of starch biology.

SELECTION OF CITATIONS
SEARCH DETAIL