Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766090

ABSTRACT

One of the challenges in studying islet inflammation - insulitis - is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinders intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "what is unique about regions of the islet which interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, ß-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on T/ß cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked ß-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all ß-cells.

2.
Front Immunol ; 13: 814203, 2022.
Article in English | MEDLINE | ID: mdl-35145521

ABSTRACT

T cells and B cells have been identified in human and murine islets, but the phenotype and role of islet lymphocytes is unknown. Resident immune populations set the stage for responses to inflammation in the islets during homeostasis and diabetes. Thus, we sought to identify the phenotype and effector function of islet lymphocytes to better understand their role in normal islets and in islets under metabolic stress. Lymphocytes were located in the islet parenchyma, and were comprised of a mix of naïve, activated, and memory T cell and B cell subsets, with an enrichment for regulatory B cell subsets. Use of a Nur77 reporter indicated that CD8 T cells and B cells both received local antigen stimulus, indicating that they responded to antigens present in the islets. Analysis of effector function showed that islet T cells and B cells produced the regulatory cytokine IL-10. The regulatory phenotype of islet T cells and B cells and their response to local antigenic stimuli remained stable under conditions of metabolic stress in the diet induced obesity (DIO) model. T cells present in human islets retained a similar activated and memory phenotype in non-diabetic and T2D donors. Under steady-state conditions, islet T cells and B cells have a regulatory phenotype, and thus may play a protective role in maintaining tissue homeostasis.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Homeostasis/physiology , Islets of Langerhans/immunology , Stress, Physiological/physiology , T-Lymphocytes/immunology , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 2/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Obesity/immunology , Phenotype
3.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415994

ABSTRACT

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Subject(s)
Autoimmunity/physiology , Islets of Langerhans/enzymology , Phagocytes/physiology , T-Lymphocytes/immunology , c-Mer Tyrosine Kinase/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Antigen-Presenting Cells/immunology , Antigens/immunology , Antigens/metabolism , CD11 Antigens/metabolism , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/pathology , Female , Humans , Islets of Langerhans/immunology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/immunology , Phagocytes/immunology , Piperazines/pharmacology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
4.
Front Immunol ; 10: 99, 2019.
Article in English | MEDLINE | ID: mdl-30766536

ABSTRACT

Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.


Subject(s)
CD11c Antigen/immunology , Diabetes Mellitus, Type 1/immunology , Islets of Langerhans/immunology , T-Lymphocytes/immunology , Animals , Female , Mice, Inbred NOD , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...