Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 682, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267413

ABSTRACT

Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Receptors, CCR7/genetics , Neoplasms/genetics , Neoplasms/therapy , Antigen Presentation , Dendritic Cells
2.
Sci Immunol ; 8(90): eabo5558, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100544

ABSTRACT

Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Mice , Humans , Animals , Interleukin-10/metabolism , Neoplasms/therapy , Neoplasms/metabolism , Immunotherapy , Forkhead Transcription Factors/metabolism
3.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36178457

ABSTRACT

Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Basic-Leucine Zipper Transcription Factors/genetics , Humans , Immunity, Innate , Killer Cells, Natural
4.
Immunology ; 163(4): 512-520, 2021 08.
Article in English | MEDLINE | ID: mdl-33838058

ABSTRACT

CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.


Subject(s)
Adenocarcinoma/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Receptors, CCR8/metabolism , Skin Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR8/genetics
5.
Sci Rep ; 10(1): 18902, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144667

ABSTRACT

Whereas effector CD4+ and CD8+ T cells promote immune activation and can drive clearance of infections and cancer, CD4+ regulatory T (Treg) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4+ Treg cells and suppressing the effector functions of multiple effector T cell (Teff) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.


Subject(s)
Acrylamides/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Luminescent Measurements/methods , Phenylenediamines/pharmacology , Tetradecanoylphorbol Acetate/analogs & derivatives , Transcription Factor AP-1/genetics , Animals , Cell Differentiation , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Jurkat Cells , Luciferases/genetics , Luciferases/metabolism , Mice , Tetracycline/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
6.
Nature ; 583(7816): 447-452, 2020 07.
Article in English | MEDLINE | ID: mdl-32499651

ABSTRACT

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Colitis/genetics , Colitis/immunology , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , T-Lymphocytes, Regulatory/immunology , Acetylation , Alleles , Animals , Chromosomes, Mammalian/genetics , Female , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Synteny/genetics
7.
J Exp Med ; 217(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32515782

ABSTRACT

Regulatory T (Treg) cell populations are composed of functionally quiescent resting Treg (rTreg) cells which differentiate into activated Treg (aTreg) cells upon antigen stimulation. How rTreg cells remain quiescent despite chronic exposure to cognate self- and foreign antigens is unclear. The transcription factor BACH2 is critical for early Treg lineage specification, but its function following lineage commitment is unresolved. Here, we show that BACH2 is repurposed following Treg lineage commitment and promotes the quiescence and long-term maintenance of rTreg cells. Bach2 is highly expressed in rTreg cells but is down-regulated in aTreg cells and during inflammation. In rTreg cells, BACH2 binds to enhancers of genes involved in aTreg differentiation and represses their TCR-driven induction by competing with AP-1 factors for DNA binding. This function promotes rTreg cell quiescence and long-term maintenance and is required for immune homeostasis and durable immunosuppression in cancer. Thus, BACH2 supports a "division of labor" between quiescent rTreg cells and their activated progeny in Treg maintenance and function, respectively.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Cell Cycle , Homeostasis , Immunosuppression Therapy , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line, Tumor , Cell Lineage , Cytokines/metabolism , Down-Regulation , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Inflammation/pathology , Integrases/metabolism , Mice, Inbred C57BL , Neoplasms/genetics , Phenotype , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/cytology , Transcription Factor AP-1/metabolism
8.
Trends Immunol ; 39(12): 1021-1035, 2018 12.
Article in English | MEDLINE | ID: mdl-30413351

ABSTRACT

T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.


Subject(s)
Cell Communication , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Humans , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/immunology
9.
J Immunol ; 200(4): 1457-1470, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29330323

ABSTRACT

T cells predominate the immune responses in the synovial fluid of patients with persistent Lyme arthritis; however, their role in Lyme disease remains poorly defined. Using a murine model of persistent Lyme arthritis, we observed that bystander activation of CD4+ and CD8+ T cells leads to arthritis-promoting IFN-γ, similar to the inflammatory environment seen in the synovial tissue of patients with posttreatment Lyme disease. TCR transgenic mice containing monoclonal specificity toward non-Borrelia epitopes confirmed that bystander T cell activation was responsible for disease development. The microbial pattern recognition receptor TLR2 was upregulated on T cells following infection, implicating it as marker of bystander T cell activation. In fact, T cell-intrinsic expression of TLR2 contributed to IFN-γ production and arthritis, providing a mechanism for microbial-induced bystander T cell activation during infection. The IL-10-deficient mouse reveals a novel TLR2-intrinsic role for T cells in Lyme arthritis, with potentially broad application to immune pathogenesis.


Subject(s)
Interleukin-10/deficiency , Lyme Disease/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 2/immunology , Animals , Female , Interleukin-10/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
10.
Immunobiology ; 221(5): 618-33, 2016 May.
Article in English | MEDLINE | ID: mdl-26831822

ABSTRACT

T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.


Subject(s)
Gene Expression Regulation , Snail Family Transcription Factors/metabolism , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cell Lineage/genetics , Cytokines/genetics , Cytokines/metabolism , Gene Deletion , Immunologic Memory , Immunophenotyping , Lymphocyte Activation , Mice , Mice, Knockout , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/genetics , Snail Family Transcription Factors/genetics , T-Lymphocyte Subsets/immunology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...