Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 393, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349333

ABSTRACT

Precipitation indices based on daily gauge observations are well established, openly available and widely used to detect and understand climate change. However, in many areas of climate science and risk management, it has become increasingly important to understand precipitation characteristics, variability and extremes at shorter (sub-daily) durations. Yet, no unified dataset of sub-daily indices has previously been available, due in large part to the lesser availability of suitable observations. Following extensive efforts in data collection and quality control, this study presents a new global dataset of sub-daily precipitation indices calculated from a unique database of 18,591 gauge time series. Developed together with prospective users, the indices describe sub-daily precipitation variability and extremes in terms of intensity, duration and frequency properties. The indices are published for each gauge where possible, alongside a gridded data product based on all gauges. The dataset will be useful in many fields concerned with variability and extremes in the climate system, as well as in climate model evaluation and management of floods and other risks.

2.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190542, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33641464

ABSTRACT

A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

SELECTION OF CITATIONS
SEARCH DETAIL
...