Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(45): 30880-30886, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947771

ABSTRACT

Fentanyl is a synthetic opioid used for managing chronic pain. Due to its higher potency (50-100×) than morphine, fentanyl is also an abused drug. A sensor that could detect illicit fentanyl by identifying its thermally degraded fragments would be helpful to law enforcement. While experimental studies have probed the thermal degradation of fentanyl, little theoretical work has been done to understand the mechanism. Here, we studied the thermal degradation pathways of fentanyl using extensive ab initio molecular dynamics simulations combined with enhanced sampling via multiple-walker metadynamics. We calculated the free energy profile for each bond suggested earlier as a potential degradation point to map the thermodynamic driving forces. We also estimated the forward attempt rate of each bond degradation reaction to gain information about degradation kinetics.


Subject(s)
Fentanyl , Illicit Drugs , Temperature , Analgesics, Opioid , Morphine
2.
J Chromatogr Sci ; 58(5): 389-400, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32291439

ABSTRACT

Despite promising advances with metal-organic frameworks (MOFs) as stationary phases for chromatography, the application of MOFs for one- and two-dimensional micro-gas chromatography (µGC and µGC × µGC) applications has yet to be shown. We demonstrate for the first time, µGC columns coated with two different MOFs, HKUST-1 and ZIF-8, for the rapid separation of high volatility light alkane hydrocarbons (natural gas) and determined the partition coefficients for toxic industrial chemicals, using µGC and µGC × µGC systems. Complete separation of natural gas components, methane through pentane, was completed within 1 min, with sufficient resolution to discriminate n-butane from i-butane. Layer-by-layer controlled deposition cycles of the MOFs were accomplished to establish the optimal film thickness, which was validated using GC (sorption thermodynamics), quartz-crystal microbalance gravimetric analysis and scanning electron microscopy. Complete surface coverage was not observed until after ~17 deposition cycles. Propane retention factors with HKUST-1-coated µGC and a state-of-the-art polar, porous-layer open-tubular (PLOT) stationary phase were approximately the same at ~7.5. However, with polar methanol, retention factors with these two stationary phases were 748 and 59, respectively, yielding methanol-to-propane selectivity factors of ~100 and ~8, respectively, a 13-fold increase in polarity with HKUST-1. These studies advance the applications of MOFs as µGC stationary phase.

3.
Lab Chip ; 19(9): 1633-1643, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30919866

ABSTRACT

A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20 000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.

4.
Anal Sci ; 35(6): 671-677, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30773510

ABSTRACT

We describe for the first time hydrogen bonded acid (HBA) polymer, poly{methyl[3-(2-hydroxyl, 4,6-bistrifluoromethyl)phenyl]propylsiloxane}, (DKAP), as stationary phase for gas chromatography (µGC) of organophosphate (OP), chemical warfare agent (CWA) surrogates, dimethylmethylphosphonate (DMMP), diisopropylmethylphosphonate (DIMP), diethylmethylphosphonate (DEMP), and trimethylphosphate (TMP), with high selectivity. Absorption of OPs to DKAP was one-to-several orders of magnitude higher relative to commercial polar, mid-polar, and nonpolar stationary phases. We also present for the first-time thermodynamic studies on the absorption of OP vapors and quantitative binding energy data for interactions with various stationary phases. These data help to identify the best pair of hetero-polar columns for a two-dimensional GC system, employing a nonpolar stationary phase as GC1 and DKAP as the GC2 stationary phase, for selective and rapid field detection of CWAs.

5.
Sensors (Basel) ; 11(7): 6517-32, 2011.
Article in English | MEDLINE | ID: mdl-22163970

ABSTRACT

Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (µGC) system is essential for such applications. We describe the design, fabrication and packaging of µGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), µGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid µGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated µGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.


Subject(s)
Chemical Warfare Agents/analysis , Chromatography, Gas/instrumentation , Air Pollutants/analysis , Breath Tests/instrumentation , Chromatography, Gas/economics , Equipment Design , Gases/analysis
7.
Anal Chem ; 80(12): 4487-97, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18484737
8.
J Sep Sci ; 29(2): 218-27, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16524095

ABSTRACT

The effects of split-flow operation and rapid trap heating on injection-plug widths from an electrically heated, microscale, multibed sorption trap were evaluated. The sorption trap has been designed to quantitatively collect volatile organic compounds from large-volume vapor samples and inject them into a gas chromatograph. Previous trap designs resulted in injection-plug widths of typically a second or more, and this significantly degraded chromatographic resolution, particularly for early-eluting sample components and for high-speed separations. Injection-plug widths are determined by the heating rate of the trap during sample desorption and the volumetric flow rate of carrier gas through the trap. The effects of the heating rate of the trap and carrier gas velocity through the trap on the injection-plug widths of pentane, octane, and undecane were studied. Carrier gas velocity through the trap was increased by splitting the flow coming from the trap between the column and a vent. This decreases transport time from the trap to the column, and thus decreases injection-plug widths. The heating rate for the trap was increased by increasing the applied voltage in the range from 4 to 30 V. Increasing the heating rate decreases the time required to desorb the analytes from the sorbent bed, thus decreasing injection-plug width. Injection-plug widths as small as 89, 210, and 520 ms were obtained in the split mode with very fast heating rates for n-pentane, noctane, and n-undecane, respectively. The effect of split ratio on resolving power, peak height, and peak width was also evaluated.


Subject(s)
Air/analysis , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Flame Ionization/instrumentation , Flame Ionization/methods , Hot Temperature , Organic Chemicals/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...