Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 169: 112523, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34049068

ABSTRACT

Despite that the ballast water management (BWM) convention has come into force to prevent the spread of harmful aquatic organisms, to date, very few bacteria can be identified through microbial culture method. In this study, we explored a reduced-representation sequencing of 2b-RAD approach to investigate the bacterial diversity in ballast water and sediments (BWS). Our results indicated a large amount of bacteria species (1496) detected in BWS up to now, including 13 pathogens that are seriously concerning in marine environment and aquaculture like the most harmful Vibrio harveyi and Aurantimonas coralicida. We showed that the ballast water had relative lower species, which was dominated by Proteobacteria. In contrast, the sediments had richer species, which was dominated by Bacteroidetes. Although BWS differed significantly in species composition, sediments shared most of the concerned pathogens with ballast water, highlighting the importance of sediment management. In conclusion, 2b-RAD sequencing shows promise in future BWM.


Subject(s)
Vibrio , Water , Alphaproteobacteria , Ships
2.
Gene ; 702: 56-65, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30926308

ABSTRACT

There are many DNA taxonomy methods available, but single-locus data coupled with distance-based analyses still dominate species identification in practice. Genetic distance thresholds are often used for assigning genetic diversity into entities corresponding to species but are criticized for non-universality or arbitrary. This study investigated an alternative approach for determining genetic thresholds that used iteratively sister-clade clustering for sister species boundary detection within a phylogenetic framework. This method was separately applied to two close subfamilies of Callosciurinae and Sciurinae in Rodentia using the cyt b gene. Our results showed that genetic thresholds for Callosciurinae and Sciurinae were 4.0% and 6.0%, respectively, indicating that the optimized thresholds could be lineage-specific. The use of these thresholds for taxa partitioning yielded a very similar putative species number as the prevailing ABGD method, and increased species diversity by 74.2% and 20.7% in Callosciurinae and Sciurinae, respectively. This suggested that additional cryptic species were present that warrant further investigation. We further tested the performance limitation of our method by simulating the impacts of tree construction and sampling limitation. The results showed that it preformed equally well for different trees but failed to work when inter- or intraspecific sampling is insufficient. These findings support the feasibility of this approach as an alternative tool for species delineation when only single-locus information is available for large datasets.


Subject(s)
Sciuridae/classification , Animals , Cluster Analysis , Phylogeny , Sciuridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...