Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Horm Behav ; 126: 104870, 2020 11.
Article in English | MEDLINE | ID: mdl-33002455

ABSTRACT

Galanin is a conserved neuropeptide involved in parental care and feeding. While galanin is known to mediate parental care and infanticide in rodents, its role in parental care and feeding behaviors in other taxa, particularly fishes, remains poorly understood. Mouthbrooding is an extreme form of parental care common in fishes in which caregivers carry offspring in their buccal cavity for the duration of development, resulting in obligatory starvation. In the cichlid fish Astatotilapia burtoni, females brood their young for ~2 wks and perform maternal care after release by collecting them into their mouth when threatened. However, females will cannibalize their brood after ~5 days. To examine the role of gal in feeding and maternal care, we collected mouthbrooding, fed, and starved females, as well as those displaying post-release maternal care and infanticide behaviors. Activation of gal neurons in the preoptic area (POA) was associated with parental care, providing the first link between gal and offspring-promoting behaviors in fishes. In contrast, activation of gal neurons in the lateral tuberal nucleus (NLT), the Arcuate homolog, was associated with feeding and infanticide. Overall, these data suggest gal is functionally conserved across vertebrate taxa with POA gal neurons promoting maternal care and Arc/NLT gal neurons promoting feeding.


Subject(s)
Behavior, Animal/physiology , Cichlids/physiology , Feeding Behavior/physiology , Galanin/metabolism , Nesting Behavior/physiology , Neurons/physiology , Animals , Female , Male , Neurons/metabolism , Preoptic Area/cytology , Preoptic Area/metabolism , Preoptic Area/physiology
2.
Horm Behav ; 114: 104539, 2019 08.
Article in English | MEDLINE | ID: mdl-31199904

ABSTRACT

Visual communication is used widely across the animal kingdom to convey crucial information about an animals' identity, reproductive status, and sex. Although it is well-demonstrated that auditory and olfactory sensitivity can change with reproductive state, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice behaviors in many species are largely dependent on visual signals. Here, we tested for reproductive state-dependent plasticity in the eye of the cichlid fish Astatotilapia burtoni using behavioral, gene expression, neural activation, and electrophysiology techniques. Males court ovulated females more intensely than gravid females, and ovulated females were more responsive to male courtship behaviors than gravid females. Using electroretinography to measure visual sensitivity in dark-adapted fish, we revealed that gravid, reproductively-ready females have increased visual sensitivity at wavelengths associated with male courtship coloration compared to non-gravid females. After ovulation was hormonally induced, female's spectral sensitivity further increased compared to pre-injection measurements. This increased sensitivity after hormone injection was absent in non-gravid females and in males, suggesting an ovulation-triggered increase in visual sensitivity. Ovulated females had higher mRNA expression levels of reproductive neuromodulatory receptors (sex-steroids; gonadotropins) in the eye than nonovulated females, whereas males had similar expression levels independent of reproductive/social state. In addition, female mate choice-like behaviors positively correlated with expression of gonadotropin system receptors in the eye. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.


Subject(s)
Cichlids/physiology , Ocular Physiological Phenomena , Reproduction/physiology , Africa , Animals , Behavior, Animal/physiology , Electroretinography/veterinary , Female , Gonadal Steroid Hormones/metabolism , Male , Neuronal Plasticity/physiology , Retinal Neurons/physiology , Smell , Visual Pathways/physiology
3.
Sci Rep ; 8(1): 6818, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717159

ABSTRACT

Dominance hierarchies are common across the animal kingdom and have important consequences for reproduction and survival. Animals of lower social status cope with repeated social defeat using proactive and reactive behaviours. However, there remains a paucity of information on how an individual's coping behaviours changes over time or what neural mechanisms are involved. We used a resident-intruder paradigm in the African cichlid fish Astatotilapia burtoni to investigate the neural correlates of these two opposing behaviour groups. Fish initially used both proactive and reactive behaviours, but had a dramatic increase in use of proactive behaviours during the third interaction, and this was followed by cessation of proactive behaviours and exclusive use of reactive coping. By quantifying neural activation in socially-relevant brain regions, we identify a subset of brain nuclei, including those homologous to the mammalian amygdala, showing higher activation in fish displaying proactive but not reactive behaviours. Fish displaying reactive behaviours had greater neural activation in the superior raphe, suggesting a possible conserved function during social defeat across vertebrates. These data provide the first evidence on the involvement of specific brain regions underlying proactive and reactive coping in fishes, indicating that these nuclei have conserved functions during social defeat across taxa.


Subject(s)
Adaptation, Psychological/physiology , Behavior, Animal/physiology , Cichlids/physiology , Dominance-Subordination , Social Behavior , Stress, Psychological , Adaptation, Physiological , Aggression , Amygdala/metabolism , Analysis of Variance , Animals , Genes, Immediate-Early , Immunohistochemistry , Male , Raphe Nuclei/metabolism , Video Recording
4.
J Exp Biol ; 220(Pt 23): 4463-4470, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29187622

ABSTRACT

Mouth brooding is an extreme form of parental care in which the brooding parent carries the developing young in their buccal cavity for the duration of development. Brooding fish need to compensate for the brood weight on the anterior portion of their body. For fishes with a compartmentalized swim bladder, gas distribution between the chambers may aid in regulating buoyancy during brooding. To test this hypothesis, we took radiographs of Astatotilapia burtoni to compare the swim bladder morphology of gravid, mouth-brooding and recovering females. Following spawning, females carry developing fish in their buccal cavity for ∼2 weeks, resulting in a larger and rounder anterior swim bladder compartment. Comparatively, the swim bladder of gravid females is long and cylindrical. Using small beads to mimic brood weight and its effects on female buoyancy, swim bladder changes were induced that resembled those observed during brooding. Immediately after releasing their fry, brooding females swim at a positive angle of attack but correct their swimming posture to normal within 5 min, suggesting a rapid change in swim bladder gas distribution. These data provide new insights into how swim bladder morphology and swimming behavior change during mouth brooding, and suggest a compartmentalized swim bladder may be a morphological adaptation for mouth brooding.


Subject(s)
Air Sacs/anatomy & histology , Cichlids/anatomy & histology , Cichlids/physiology , Reproduction , Animals , Female , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL