Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Analyst ; 141(5): 1796-806, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26862713

ABSTRACT

Peroxynitrite is a potent nitroxidation agent and highly reactive metabolite, clinically correlated with a rich pathophysiology. Its sensitive and selective detection is challenging due to its high reactivity and short sub-second lifetime. Boron-doped diamond (BDD) microelectrodes have attracted interest because of their outstanding electroanalytical properties that include a wide working potential window and enhanced signal-to-noise ratio. Herein, we report on the modification of a BDD microelectrode with an electro-polymerized film of hemin and polyethylenedioxythiophene (PEDOT) for the purpose of selectively quantifying peroxynitrite. The nanostructured modified polymer layer was characterized by Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical response to peroxynitrite was studied by voltammetry and time-based amperometry. The measured detection limit was 10 ± 0.5 nM (S/N = 3), the sensitivity was 4.5 ± 0.5 nA nM(-1) and the response time was 3.5 ± 1 s. The hemin-PEDOT BDD sensors exhibited a response variability of 5% or less (RSD). The stability of the sensors after a 20-day storage in 0.1 M PB (pH 7.4) at 4 °C was excellent as at least 93% of the initial response to 50 nM PON was maintained. The presence of PEDOT was correlated with a sensitivity increase.


Subject(s)
Boron/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Diamond/chemistry , Electrochemistry/instrumentation , Hemin/chemistry , Peroxynitrous Acid/analysis , Polymers/chemistry , Limit of Detection , Microelectrodes , Peroxynitrous Acid/chemistry , Spectrum Analysis, Raman , Time Factors
2.
ACS Nano ; 4(8): 4565-70, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20669980

ABSTRACT

We have studied the electronic properties and relative stability of the biphenylene sheet composed of alternating eight-, six- and four-carbon rings and its one-dimensional derivatives including ribbons and tubes of different widths and morphologies by means of density functional theory calculations. The two-dimensional sheet presents a metallic character that is also present in the planar strips with zigzag-type edges. Armchair-edged strips develop a band gap that decreases monotonically with the ribbon width. The narrowest armchair strip considered here (0.62 nm wide) presents a large band gap of 1.71 eV, while the 2.14 nm wide armchair strip exhibits a band gap of 0.08 eV. We have also found that tubes made by rolling these ribbons in a seamlessly manner are all metallic, independent of their chirality. However, while the calculated energy landscape suggests that planar strips present a relative stability comparable to that of C(60), in the tubular form, they present a more pronounced metastable nature with a Gibbs free energy of at least 0.2 eV per carbon higher than in C(60).

SELECTION OF CITATIONS
SEARCH DETAIL